两个服从Gamma分布的随机变量的和的pdf和cdf

两个服从Gamma分布的随机变量的和的pdf和cdf

随机变量\(X\)服从参数\((\alpha,\beta)\)​的Gamma分布,则其概率密度函数(pdf)可以表示为

\[f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x},(x > 0)\tag{1} \]

其对应的矩母函数为\({\rm M}_x(t)=(1+t/\beta)^{-\alpha}\)​​​,所以若\(X_1 \backsim G(\alpha_1,\beta_1),X_2 \backsim G(\alpha_2,\beta_2),X=X_1+X_2\)​​​,且\(\beta_1=\beta_2=\beta\),则由矩母函数可以很容易得到\({\rm M}_x(t)={\rm M}_{x_1}(t){\rm M}_{x_2}(t)=(1+t/\beta)^{-(\alpha_1+\alpha_2)}\),所以\(X \backsim G(\alpha_1+\alpha_2,\beta)\)​​​,该性质称为Gamma分布的可加性,其更具体的推导过程可以查看《​​​不同方法推导Gamma分布可加性产生的矛盾》。对于更一般的情况,即两个随机变量服从参数不同的Gamma分布,则这两个随机变量和的随机变量的矩母函数可以表示\({\rm M}_x(t)={\rm M}_{x_1}(t){\rm M}_{x_2}(t)=(1+t/\beta_1)^{-\alpha_1}(1+t/\beta_2)^{-\alpha_2}\),此时不再服从上述可加性性质。本文将就上述\(\alpha_1,\alpha_2 \in \Bbb Z^+\)情况下的两个Gamma分布随机变量的和的pdf和cdf进行推导。

根据概率论相关知识,我们知道,两个随机变量的和的pdf等于各自pdf的卷积,因此

\[\begin{equation} \begin{aligned} f_x(x)=\int_{-\infty}^\infty f_{x_1}(y)f_{x_2}(x-y)dy \end{aligned} \end{equation}\tag{2} \]

易知,仅当\(y>0,x-y>0\)​,即\(y>0,y<x\)时,上述积分的被积函数不等于0,将相关表达式带入(2)可以得到

\[\begin{equation} \begin{aligned} f_x(x)&=\frac{\beta_1^{\alpha_1}\beta_2^{\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^x y^{\alpha_1-1}e^{-\beta_1 y}(x-y)^{\alpha_2-1}e^{-\beta_2(x-y)}dy\\ &=\frac{\beta_1^{\alpha_1}\beta_2^{\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} e^{-\beta_2 x} \int_0^x y^{\alpha_1-1}(x-y)^{\alpha_2-1}e^{-(\beta_1-\beta_2)y}dy \end{aligned} \end{equation}\tag{3} \]

由二项展开定理有:\((x-y)^{\alpha_2-1}=\sum_{i=0}^{\alpha_2-1}(-1)^{\alpha_2-1-i} \begin{pmatrix}\alpha_2-1\\ i\end{pmatrix}x^i y^{\alpha_2-1-i}\),将其代入(3)并化简有

\[\begin{equation} \begin{aligned} f_x(x)&=\frac{\beta_1^{\alpha_1}\beta_2^{\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} e^{-\beta_2 x} \sum_{i=0}^{\alpha_2-1}(-1)^{\alpha_2-1-i} \begin{pmatrix}\alpha_2-1\\ i\end{pmatrix}x^i \int_0^x y^{\alpha_1+\alpha_2-i-2}e^{-(\beta_1-\beta_2)}dy \end{aligned} \end{equation}\tag{4} \]

上述积分式的求导,需要用到下面的定理[1]:

\[\begin{equation} \begin{aligned} \int_0^\mu{x^m e^{-tx}dx}=m!t^{-(m+1)}[1-\sum_{k=0}^m{\frac{t^k}{k!} \mu^k e^{-t\mu}}] \quad\underrightarrow{\mu \rightarrow \infty} \quad \int_0^\mu{x^m e^{-tx}dx}=m!t^{-(m+1)} \end{aligned} \end{equation}\tag{5} \]

所以

\[\int_0^x y^{\alpha_1+\alpha_2-i-2}e^{-(\beta_1-\beta_2)}dy=(\alpha_1+\alpha_2-i-2)!(\beta_1-\beta_2)^{-(\alpha_1+\alpha_2-i-1)}[1-\sum_{k=0}^{\alpha_1+\alpha_2-i-2}{\frac{(\beta_1-\beta_2)^k}{k!} x^k e^{-(\beta_1-\beta_2) x}}]\tag{6} \]

将(6)代入(4)整理得到

\[\begin{equation} \begin{aligned} f_x(x)=A_0\sum_{i=0}^{\alpha_2-1}A_1(i)[x^i e^{-\beta_2 x}-\sum_{k=0}^{\alpha_1+\alpha_2-i-2}{\frac{(\beta_1-\beta_2)^k}{k!} x^{k+i} e^{-\beta_1 x}}] \end{aligned} \end{equation}\tag{7} \]

其中

\[\begin{equation} \begin{aligned} A_0 &\overset{\Delta}{=} A_0(\alpha_1,\alpha_2,\beta_1,\beta_2)=\frac{\beta_1^{\alpha_1}\beta_2^{\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)}\\ A_1(i)&\overset{\Delta}{=}A_1(\alpha_1,\alpha_2,\beta_1,\beta_2,i)=(-1)^{\alpha_2-1-i} \begin{pmatrix}\alpha_2-1\\ i\end{pmatrix}(\alpha_1+\alpha_2-i-2)!(\beta_1-\beta_2)^{-(\alpha_1+\alpha_2-i-1)} \end{aligned} \end{equation}\tag{8} \]

\(X\)的cdf可以表示为其pdf的积分,因此

\[\begin{equation} \begin{aligned} F_x(x)=\int_0^x f_x(x)dx=I_0-I_1 \end{aligned} \end{equation}\tag{9} \]

其中

\[\begin{equation} \begin{aligned} I_0&=A_0\sum_{i=0}^{\alpha_2-1}A_1(i)\int_0^x x^i e^{-\beta_2 x}dx\\ &=A_0\sum_{i=0}^{\alpha_2-1}A_1(i) i!\beta_2^{-(i+1)}[1-\sum_{k=0}^i{\frac{\beta_2^k}{k!} x^k e^{-\beta_2 x}}]\\ I_1&=A_0\sum_{i=0}^{\alpha_2-1}A_1(i)\sum_{k=0}^{\alpha_1+\alpha_2-i-2}{\frac{(\beta_1-\beta_2)^k}{k!} \int_0^x x^{k+i} e^{-\beta_1 x}}dx\\ &=A_0\sum_{i=0}^{\alpha_2-1}A_1(i)\sum_{k=0}^{\alpha_1+\alpha_2-i-2}\frac{(\beta_1-\beta_2)^k}{k!}(k+i)!\beta_1^{-(k+i+1)}[1-\sum_{j=0}^{k+i}{\frac{\beta_1^j}{j!} x^j e^{-\beta_1 x}}] \end{aligned} \end{equation}\tag{10} \]

将(10)带入(9)并整理得到

\[\begin{equation} \begin{aligned} F_x(x)&=A_0\sum_{i=0}^{\alpha_2-1}A_1(i)[i!\beta_2^{-(i+1)}-\sum_{k=0}^{\alpha_1+\alpha_2-i-2}\frac{(\beta_1-\beta_2)^k}{k!}(k+i)!\beta_1^{-(k+i+1)}]\\ &-A_0\sum_{i=0}^{\alpha_2-1}A_1(i)[i!\sum_{k=0}^i{\frac{\beta_2^{-(i-k+1)}}{k!} x^k e^{-\beta_2 x}}-\sum_{k=0}^{\alpha_1+\alpha_2-i-2}\frac{(\beta_1-\beta_2)^k}{k!}(k+i)!\sum_{j=0}^{k+i}{\frac{\beta_1^{-(k+i-j+1)}}{j!} x^j e^{-\beta_1 x}}] \end{aligned} \end{equation}\tag{11} \]

通过数值仿真发现(11)式中的前一部分满足

\[A_0\sum_{i=0}^{\alpha_2-1}A_1(i)[i!\beta_2^{-(i+1)}-\sum_{k=0}^{\alpha_1+\alpha_2-i-2}\frac{(\beta_1-\beta_2)^k}{k!}(k+i)!\beta_1^{-(k+i+1)}]\equiv 1 \]

但是目前还不知道如何证明?显然此时pdf和cdf的表达式均很复杂,也有可能还没有化简到最简形式,但是暂时不知道怎样化简下去了。


参考文献

[1] Table of Integrals, Series, and Products

posted @ 2021-08-27 12:24  平和少年  阅读(80)  评论(0编辑  收藏  举报