Codeforces Round #685 (Div. 2)

Codeforces Round #685 (Div. 2)

A Subtract or Divide

思路:对于偶数直接除 \(2\) 再减 \(1\) ,奇数先减 \(1\) ,然后和偶数相同,小一点的数要特判

#include <bits/stdc++.h>
using namespace std;
#define lc (rt << 1)
#define rc ((rt << 1) | 1)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define rep(i, l, r) for (int i = (l); i <= (r); ++i)
#define per(i, r, l) for (int i = (r); i >= (l); --i)
#define PE(i, u) for (int i = head[u]; i != -1; i = edge[i].next)
typedef long long LL;
const int maxn = 1e6 + 20;
const int mod = 1e9 + 7;
int a[maxn], n;
int main(int argc, char const *argv[])
{
	int t;
	scanf("%d", &t);
	while(t--){
		scanf("%d", &n);
		if(n == 1) {
			printf("0\n");
		} else if(n == 2){
			printf("1\n");
		} else if(n == 3){
			printf("2\n");
		} else if(n % 2 == 0){
			printf("2\n");
		} else {
			printf("3\n");
		}
	}    
    return 0;
}

B Non-Substring Subsequence

思路:其实只用看 \(le\) 的左边有没有和 \(s_{le}\) 相同的或者 \(ri\) 的右边有没有和 \(s_{ri}\) 相同的,有一个成立就是 \(YES\)

#include <bits/stdc++.h>
using namespace std;
#define lc (rt << 1)
#define rc ((rt << 1) | 1)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define rep(i, l, r) for (int i = (l); i <= (r); ++i)
#define per(i, r, l) for (int i = (r); i >= (l); --i)
#define PE(i, u) for (int i = head[u]; i != -1; i = edge[i].next)
typedef long long LL;
const int maxn = 1e6 + 20;
const int mod = 1e9 + 7;
int a[maxn], n, q;
char s[maxn];
int sum[maxn];
int main(int argc, char const *argv[])
{
	int t;
	scanf("%d", &t);
	while(t--){
		scanf("%d%d", &n, &q);
		scanf("%s", s + 1);
		rep(i, 1, n){
			sum[i] = sum[i - 1];
			if(s[i] == '1') sum[i]++;
		}
		while(q--){
			int le, ri;
			scanf("%d%d", &le, &ri);
			if(s[le] == '1' && sum[le - 1]){
				printf("YES\n");
				continue;
			}
			if(s[le] == '0' && sum[le - 1] != le - 1){
				printf("YES\n");
				continue;
			}
			if(s[ri] == '0' && sum[n] - sum[ri] != n - ri){
				printf("YES\n");
				continue;
			}
			if(s[ri] == '1' && sum[n] - sum[ri]){
				printf("YES\n");
				continue;
			}
			printf("NO\n");
		}
	}    
    return 0;
}

C String Equality

思路:统计串 \(s\)\(t\)\(a\)\(z\) 的个数,然后从 \(a\) 开始枚举, 如果 \(nums[i] < numt[i]\) ,答案就是 \(No\) ,如果 \(nums[i] >= numt[i]\) ,那么判断 \(nums[i] - numt[i]\) 能不能整除 \(k\) ,若不能,答案就是 \(No\) ,否则 \(nums[i + 1] = nums[i] - numt[i]\)

#include <bits/stdc++.h>
using namespace std;
#define lc (rt << 1)
#define rc ((rt << 1) | 1)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define rep(i, l, r) for (int i = (l); i <= (r); ++i)
#define per(i, r, l) for (int i = (r); i >= (l); --i)
#define PE(i, u) for (int i = head[u]; i != -1; i = edge[i].next)
typedef long long LL;
const int maxn = 1e6 + 20;
const int mod = 1e9 + 7;
int a[maxn], n, q;
char s[maxn], t[maxn];
int nums[maxn], numt[maxn];
int main(int argc, char const *argv[])
{
	int tt;
	scanf("%d", &tt);
	while(tt--){
		scanf("%d%d", &n, &q);
		scanf("%s", s + 1);
		scanf("%s", t + 1);
		sort(s + 1, s + n + 1);
		rep(i, 0, 25) nums[i] = numt[i] = 0;
		rep(i, 1, n) nums[s[i] - 'a']++;
		rep(i, 1, n) numt[t[i] - 'a']++;
		int flag = 1;
		rep(i, 0, 25){
			if(numt[i] > nums[i]){
				flag = 0;
				break;
			}
			int res = nums[i] - numt[i];
			if(res % q){
				flag = 0;
				break;
			}
			nums[i + 1] += res;
		}
		if(flag) printf("YES\n");
		else printf("NO\n");
	}    	
    return 0;
}

D Circle Game

思路:我们首先找到最大的 \(z\) 使得 \(zk * zk * 2 <= d^{2}\) ,然后判断 \((k*(z + 1)) * (k*(z + 1)) + zk * zk \leq d^{2}\) ,满不满足,若满足,则先手赢,否则后手赢。

证明:

\((k*(z + 1)) * (k*(z + 1)) + zk * zk \leq d^{2}\) 成立 :容易看出,无论后手玩家如何移动,先手玩家总有方法使得当前坐标的 \(|x - y| == k\) ,所以先手必胜

\((k*(z + 1)) * (k*(z + 1)) + zk * zk \leq d^{2}\) 不成立:容易看出,无论先手玩家如何移动,后手玩家总能使当前坐标 \(|x == y|\)

#include <bits/stdc++.h>
using namespace std;
#define lc (rt << 1)
#define rc ((rt << 1) | 1)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define rep(i, l, r) for (int i = (l); i <= (r); ++i)
#define per(i, r, l) for (int i = (r); i >= (l); --i)
#define PE(i, u) for (int i = head[u]; i != -1; i = edge[i].next)
typedef long long LL;
const int maxn = 1e6 + 20;
const int mod = 1e9 + 7;
int a[maxn], n, q;
char s[maxn], t[maxn];
int nums[maxn], numt[maxn];
int main(int argc, char const *argv[])
{
	int tt;
	scanf("%d", &tt);
	while(tt--){
		LL d, k;
		scanf("%I64d%I64d", &d, &k);
		LL cnt = 1;
		for(LL i = k; i <= d; i += k){
			if(i * i * 2LL <= d * d){
				cnt = i / k * 2;
				if((i + k) * (i + k) + i * i <= d * d){
					cnt++;
				}
			}
		}
		if(cnt % 2){
			printf("Ashish\n");
		} else {
			printf("Utkarsh\n");
		}
	}    	
    return 0;
}

E1 E2 Bitwise Queries

由于直接看的 \(E2\) 所以直接讲最优解

思路:我们先得到 \(a_1\)\(a_2\)\(a_n\) 所有数异或后的值 \(b_2, b_3, b_4, b_5 .... b_n\) ,容易想到只要确定一个数的值,就可以确定其他所有数,然后分两种情况讨论

一、存在相同的数,那么一定存在某两个 \(i, j\) 使得 \(b_i == b_j\) 或者 存在一个 \(i\) 使得 \(b_i == 0\) ,前者可以的得出 \(a_i == a_j\) ,后者可以得出 \(a_1 == a_i\)

​ 然后我们将这两个相同的数 \(AND\) 后的值就是这两个数的值了

二、不存在相同的数,根据题目中 \(n\) 一定是 \(2\) 的次幂,并且 \(0\leq a[i] \leq n - 1\) 的条件,可以得出 \(a\)\(0\)\(n - 1\) 的一个排列, 那么就一定存在一个 \(i\) 使得 \(b_i\)

​ 等于 \(n - 1\) ,这样的 \(a_1\)\(a_i\) 有一个性质,对于二进制上任意一位,如果 \(a_1\) 的值为 \(0\) ,那么 \(a_i\) 一定为 \(1\) ,为 \(1\) 同理,那么我们只要找到任意一个 \(j\)

​ 让 \(a_j\)\(a_1, a_i\) 分别 \(AND\) 后得到值 \(c_1, c_i\) ,那么 \(c_1 | c_i\) 的值就是 \(a_j\) 的值了

自己手推一下比较好理解

#include <bits/stdc++.h>
using namespace std;
#define lc (rt << 1)
#define rc ((rt << 1) | 1)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define rep(i, l, r) for (int i = (l); i <= (r); ++i)
#define per(i, r, l) for (int i = (r); i >= (l); --i)
#define PE(i, u) for (int i = head[u]; i != -1; i = edge[i].next)
typedef long long LL;
const int maxn = 1e6 + 20;
const int mod = 1e9 + 7;
int n;
int res[maxn], ans[maxn];
map<int, int> mp;
int main(int argc, char const *argv[])
{
    scanf("%d", &n);
    int flag = 1;
    int id1 = -1, id2 = -1;
    for(int i = 2; i <= n; i++){
        printf("XOR 1 %d\n", i);
        fflush(stdout);
        scanf("%d", &res[i]);
        if(res[i] == 0){
            flag = 0;
            id1 = 1, id2 = i;
        }
        if(mp.count(res[i]) && id1 == -1) {
            id1 = mp[res[i]], id2 = i;
            flag = 0;
        }
        mp[res[i]] = i;
    }
    if(flag == 0){
        printf("AND %d %d\n", id1, id2);
        fflush(stdout);
        int x;
        scanf("%d", &x);
        ans[id1] = ans[id2] = x;
        if(id1 != 1){
            ans[1] = x ^ res[id1];
        }
        printf("! %d ", ans[1]);
        rep(i, 2, n){
            ans[i] = ans[1] ^ res[i];
            printf("%d ", ans[i]);
        }
    } else {
        id1 = id2 = -1;
        for(int i = 2; i <= n; i++){
            if(res[i] == n - 1){
                id1 = 1, id2 = i;
                break;
            }
        }
        int id;
        if(id2 == 2) id = 3;
        else id = 2;
        int b1, b2;
        printf("AND %d %d\n", id1, id);
        fflush(stdout);
        scanf("%d", &b1);
        printf("AND %d %d\n", id2, id);
        fflush(stdout);
        scanf("%d", &b2);
        ans[id] = b1 | b2;
        ans[1] = ans[id] ^ res[id];
        printf("! %d ", ans[1]);
        rep(i, 2, n){
            ans[i] = ans[1] ^ res[i];
            printf("%d ", ans[i]);
        }
    }
    return 0;
}

F Nullify The Matrix

思路:我们定义 \(f(x)\)\(a[i_1][j_1] \bigoplus a[i_2][j_2] .... \bigoplus a[i_k][j_k]\) 的值,其中 \(i_k + j_k == x\) ,也就是某一条斜对角线的异或和,如果存在 \(f(x)\) 不为 \(0\) ,那么先手赢,否则后手赢, 具体证明请看官方题解,我也是赛后补的题(菜鸡落泪

#include <bits/stdc++.h>
using namespace std;
#define lc (rt << 1)
#define rc ((rt << 1) | 1)
#define fi first
#define se second
#define pb push_back
#define pii pair<int, int>
#define rep(i, l, r) for (int i = (l); i <= (r); ++i)
#define per(i, r, l) for (int i = (r); i >= (l); --i)
#define PE(i, u) for (int i = head[u]; i != -1; i = edge[i].next)
typedef long long LL;
const int maxn = 1e6 + 20;
const int mod = 1e9 + 7;
int a[105][105];
int n, m;
int main(int argc, char const *argv[])
{
    int t;
    scanf("%d", &t);
    while(t--){
        scanf("%d%d", &n, &m);
        rep(i, 1, n){
            rep(j, 1, m){
                scanf("%d", &a[i][j]);
            }
        }
        int flag = 0;
        rep(sum, 2, n + m){
            int res = 0;
            rep(i, 1, sum - 1){
                if(!(i >= 1 && i <= n && sum - i >= 1 && sum - i <= m)) continue;
                res ^= a[i][sum - i];
            }
            if(res) {
                flag = 1;
                break;
            }
        }
        if(flag) printf("Ashish\n");
        else printf("Jeel\n");
    }   
    return 0;
}
posted @ 2020-11-23 21:42  从小学  阅读(114)  评论(0编辑  收藏  举报