[OpenCV] sift demo
运行环境:vs2012+opencv320
sift 需要的头文件为 <opencv2/xfeatures2d.hpp>
#include <opencv2/opencv.hpp> #include <opencv2/xfeatures2d.hpp> using namespace cv; using namespace std; bool refineMatchesWithHomography( const std::vector<cv::KeyPoint>& queryKeypoints, const std::vector<cv::KeyPoint>& trainKeypoints, float reprojectionThreshold, std::vector<cv::DMatch>& matches, cv::Mat& homography) { const int minNumberMatchesAllowed = 8; if (matches.size() < minNumberMatchesAllowed) return false; // Prepare data for cv::findHomography std::vector<cv::Point2f> srcPoints(matches.size()); std::vector<cv::Point2f> dstPoints(matches.size()); for (size_t i = 0; i < matches.size(); i++) { srcPoints[i] = trainKeypoints[matches[i].trainIdx].pt; dstPoints[i] = queryKeypoints[matches[i].queryIdx].pt; } // Find homography matrix and get inliers mask std::vector<unsigned char> inliersMask(srcPoints.size()); homography = cv::findHomography(srcPoints, dstPoints, CV_FM_RANSAC,reprojectionThreshold, inliersMask); std::vector<cv::DMatch> inliers; for (size_t i = 0; i < inliersMask.size(); i++) { if (inliersMask[i]) inliers.push_back(matches[i]); } matches.swap(inliers); return matches.size() > minNumberMatchesAllowed; } bool comp(vector<DMatch>& a,vector<DMatch>& b) { return a[0].distance/a[1].distance < b[0].distance/b[1].distance; } void main() { Ptr<xfeatures2d::SIFT>feature=xfeatures2d::SIFT::create(); Mat input1 = imread("sift_img\\16.png",1); Mat input2 = imread("sift_img\\11.png",1); vector<KeyPoint>kp1,kp2; Mat des1,des2; Mat output1,output2; feature->detectAndCompute(input1,cv::noArray(),kp1,des1); drawKeypoints(input1,kp1,output1); feature->detectAndCompute(input2,cv::noArray(),kp2,des2); drawKeypoints(input2,kp2,output2); vector<DMatch>matches; vector<vector<DMatch> >Dmatches; Ptr<cv::DescriptorMatcher> matcher_knn = new BFMatcher(); Ptr<cv::DescriptorMatcher> matcher = new BFMatcher(NORM_L2,true); matcher->match(des1,des2,matches); matcher_knn->knnMatch(des1,des2,Dmatches,2); sort(Dmatches.begin(),Dmatches.end(),comp); vector<DMatch> good; for(int i=0;i<Dmatches.size();i++){ if(Dmatches[i][0].distance < 0.75*Dmatches[i][1].distance) good.push_back(Dmatches[i][0]); } Mat imResultOri; drawMatches(output1, kp1, output2, kp2, matches, imResultOri,CV_RGB(0,255,0), CV_RGB(0,255,0)); Mat matHomo; refineMatchesWithHomography(kp1, kp2, 3, matches, matHomo); cout << "[Info] Homography T : " << endl << matHomo << endl; Mat imResult; drawMatches(output1, kp1, output2, kp2, matches, imResult,CV_RGB(0,255,0), CV_RGB(0,255,0)); Mat Mgood; drawMatches(output1, kp1, output2, kp2, good, Mgood,CV_RGB(0,255,0), CV_RGB(0,255,0)); imshow("ransc",imResult); imshow("knn_match",Mgood); waitKey(0); return; }