[python] a little deep learning case
from numpy import exp, array, random, dot class NeuralNetwork(): def __init__(self): random.seed(1) self.synaptic_weights = 2 * random.random((3,1)) - 1 def __sigmoid(self, x): return 1 / (1 + exp(-x)) def __sigmoid_derivative(self, x): return x*(1-x) def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations): for iteration in range(number_of_training_iterations): output = self.think(training_set_inputs) error = training_set_outputs - output adjustment = dot(training_set_inputs.T, error*self.__sigmoid_derivative(output)) self.synaptic_weights += adjustment def think(self, inputs): return self.__sigmoid(dot(inputs, self.synaptic_weights)) if __name__ == '__main__': neural_network = NeuralNetwork() print('随机的初始突触权重') print(neural_network.synaptic_weights) training_set_inputs = array([[0,0,1], [1,1,1], [1,0,1], [0,1,1]]) training_set_outputs = array([[0,1,1,0]]).T neural_network.train(training_set_inputs, training_set_outputs, 10000) print('训练后的突触权重') print(neural_network.synaptic_weights) print('考虑新的形势[1, 0, 0]') print(neural_network.think(array([1, 0, 0])))