斐波那契数列的几种实现方法
/*递归*/
#include<bits/stdc++.h>
using namespace std;
int f(int x){
if(x==0||x==1) return 1;
else return f(x-1)+f(x-2);
}
int main(){
int n;
scanf("%d",&n);
cout<<f(n)<<endl;
return 0;
}
/*类似于辗转相除的依次赋值*/
// 0 1 1 2 3 5 8
#include<bits/stdc++.h>
using namespace std;
int main(){
int n;
cin>>n;
int a = 0 , b = 1;
int res ;
if(n == 0) res = 0 ;
else if(n == 1) res = 1;
else{
for(int i = 2;i <= n; i++){
res = a + b;
a = b;
b = res;
}
}
cout<<res<<endl;
return 0;
}
/*备忘录*/
#include<bits/stdc++.h>
using namespace std;
const int N = 1100;
int a[N];
int f(int x){
if(a[x] >= 0) return a[x];//说明该值已经计算出
else return a[x]=f(x-1)+f(x-2);//计算并存储
}
int main(){
int n;
cin>>n;
memset(a, -1, sizeof a);
a[0] = 0 , a[1] = 1;
cout<<f(n)<<endl;
return 0;
}
矩阵快速幂
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <ctime>
using namespace std;
const int MOD = 1000000007;
void mul(int a[][2], int b[][2], int c[][2])
{
int temp[][2] = {{0, 0}, {0, 0}};
for (int i = 0; i < 2; i ++ )
for (int j = 0; j < 2; j ++ )
for (int k = 0; k < 2; k ++ )
{
long long x = temp[i][j] + (long long)a[i][k] * b[k][j];
temp[i][j] = x % MOD;
}
for (int i = 0; i < 2; i ++ )
for (int j = 0; j < 2; j ++ )
c[i][j] = temp[i][j];
}
int f_final(long long n)
{
int x[2] = {1, 1};
int a[2][2] = {{1, 1}, {1, 0}};
int res[][2] = {{1, 0}, {0, 1}};
int t[][2] = {{1, 1}, {1, 0}};
long long k = n - 1;
while (k)
{
if (k&1) mul(res, t, res);
mul(t, t, t);
k >>= 1;
}
int c[2] = {0, 0};
for (int i = 0; i < 2; i ++ )
for (int j = 0; j < 2; j ++ )
{
long long r = c[i] + (long long)x[j] * res[j][i];
c[i] = r % MOD;
}
return c[0];
}
int main()
{
long long n ;
cin >> n;
cout << f_final(n) << endl;
return 0;
}
作者:yxc
来源:AcWing
利用构造矩阵的方法(待补)原文链接
还有篇博客介绍了如何构造矩阵,但是现在没找到链接
补:斐波那契数列求和公式 : Sn = 2F(n) + F(n-1) - 1
求解斐波那契数列的若干方法 - AcWing