【算法竞赛进阶指南】棋盘覆盖(二分图最大匹配)

原题链接
思路:
因为骨牌是1*2的,所以可以看成是两个格子放一个。
建图过程:假设格子的坐标是(i,j),那么可以根据i+j的奇偶把所有的格子分成黑白两种,如果某个黑格子没有被禁止,那么就可以让它和它周围的白格子连边。黑格子周围都不会出现黑格子,所以同一类型的格子之间是不存在边的。建图后求二分图的最大匹配即可。
代码:

#include<bits/stdc++.h>
using namespace std;
int g[110][110];///表示不能放置
bool st[110][110];
typedef pair<int,int>PII;
PII mat[110][110];
int nx[]={0,0,1,-1};
int ny[]={1,-1,0,0};
int n,m;

bool check(int x,int y){
    if(x>0&&x<=n&&y>0&&y<=n&&!g[x][y]&&!st[x][y]) return 1;
    return 0;
}

bool Find(int x,int y){
    for(int i=0;i<4;i++){
        int nxx=x+nx[i],nyy=y+ny[i];
        if(check(nxx,nyy)){
            st[nxx][nyy]=1;
            PII t=mat[nxx][nyy];
            if(t.first==-1||Find(t.first,t.second)){
                mat[nxx][nyy]={x,y};
                return 1;
            }
        }
    }
    return 0;
}

int main(){
    cin>>n>>m;
    for(int i=1;i<=m;i++){
        int x,y;
        cin>>x>>y;
        g[x][y]=1;
    }
    memset(mat,-1,sizeof mat);
    int res=0;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if((i+j)%2&&!g[i][j]){
                memset(st,0,sizeof st);
                if(Find(i,j)) res++;
            }
    cout<<res<<endl;   
    return 0;
}
posted @ 2020-10-20 00:05  OvO1  阅读(53)  评论(0编辑  收藏  举报