YOLO算法的ZYNQ移植尝试(SDx方法、ARM部分)

尝试直接从官网移植
1.
需要将include/darknet.h文件copy到src
 
2.
发现老是报错,说代码有问题network net = parse_network_cfg(cfgfile);报错
(network和network*的问题),查看源代码,代码应该无问题。。。。
在windows下使用vs编译源代码,看是否能行:发现vs2015安装有问题,一打开软件就软件卡住了,并且可能会导致vs2013使用也出现问题,bug!!
装了几个版本的vs2015都不行,我已经放弃了!!!
 
3.
选用该处的代码,对不必要的代码做删减,尝试使用SDx编译,发现不行,如下的语法解释不了:
#define YOLODLL_API __declspec(dllexport)
 
...
 
       YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
       YOLODLL_API ~Detector();

 

4.
还是选用原始代码,将network net都修改为network *net,然后将net.修改为net->,此类修改(发现源代码中其实也是有部分改了,如yolo.c,有部分没有改)
再将example中的代码和src内的代码都加入源中进行编译
yolo_v2_class.cpp和yolo_v2_class.h,yolo_console_dll.cpp删掉
 
编译通过,但是运行错误
root@xilinx-zc706-2017_2:/mnt# ./YOLOv2.elf yolo test cfg/tiny-yolo.cfg tiny-yolo.weights data/dog.jpg
layer     filters    size              input                output
    0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16
    1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
    2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32
    3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
    4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64
    5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
    6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128
    7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
    8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256
    9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
   10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512
   11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
   12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024
   13 conv    512  3 x 3 / 1    13 x  13 x1024   ->    13 x  13 x 512
   14 conv    425  1 x 1 / 1    13 x  13 x 512   ->    13 x  13 x 425
   15 detection
mask_scale: Using default '1.000000'
Loading weights from tiny-yolo.weights...Done!
data/dog.jpg: Predicted in 36.919891 seconds.
Not compiled with OpenCV, saving to predictions.png instead
root@xilinx-zc706-2017_2:/mnt#

 

5.
研究发现正确的指令应该是:
./darknet detector test cfg/voc.data cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/dog.jpg

或者(二者等效)

./darknet detect cfg/voc.data cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/dog.jpg

才可,与某一开源代码中的运行方法不一致。

 

换成tiny-yolo.cfg不行,理论上应该将voc.data换为coco.data,但实际换了之后仍然没有检测结果。
以上均应该是cfg文件、weight文件、data文件不匹配造成的。
 
 
 
6.
最后按照这里的源代码移植编译一次,将data.c中的rand_s(&Num)函数修改为Num=rand()编译通过后(rand_s是vs的函数,fpga上编译不通过),终于成功了结果如下:
root@xilinx-zc706-2017_2:/mnt# ./detect.elf detector test cfg/voc.data cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/dog.jpg
layer     filters    size              input                output
    0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16
    1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
    2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32
    3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
    4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64
    5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
    6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128
    7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
    8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256
    9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
   10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512
   11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
   12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024
   13 conv   1024  3 x 3 / 1    13 x  13 x1024   ->    13 x  13 x1024
   14 conv    125  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 125
   15 detection
Loading weights from tiny-yolo-voc.weights...Done!
data/dog.jpg: Predicted in 47.318359 seconds.
car: 76%
bicycle: 24%
dog: 79%
Not compiled with OpenCV, saving to predictions.png instead
root@xilinx-zc706-2017_2:/mnt#

 

 
 
data/person.jpg: Predicted in 47.314194 seconds.
person: 69%
sheep: 82%
cow: 52%
Not compiled with OpenCV, saving to predictions.png instead

 

 
 
小结:
使用
root@xilinx-zc706-2017_2:/mnt# ./detect.elf detector test cfg/coco.data cfg/tiny-yolo.cfg tiny-yolo.weights data/dog.jpg
root@xilinx-zc706-2017_2:/mnt# ./detect.elf detect cfg/tiny-yolo.cfg tiny-yolo.weights data/dog.jpg
root@xilinx-zc706-2017_2:/mnt# ./detect.elf yolo est cfg/tiny-yolo.cfg tiny-yolo.weights data/dog.jpg

均能读出cfg文件,加载weights,运行37s,但是检测结果不显示,要么是指令有误,要么是配置文件有误。

 
使用
root@xilinx-zc706-2017_2:/mnt# ./detect.elf yolo test cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/person.jpg

能读出cfg文件,加载weights,运行47s,但是检测结果不显示。可能原因是没有指明voc.data,导致的问题

 
使用
root@xilinx-zc706-2017_2:/mnt# ./detect.elf detect cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/person.jpg

能读出cfg文件,加载weights,运行47s,但是检测结果不正确。可能原因是没有指明voc.data,导致的list name错乱,如下:

root@xilinx-zc706-2017_2:/mnt# ./detect.elf detect cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/person.jpg
layer     filters    size              input                output
    0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16
    1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
    2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32
    3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
    4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64
    5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
    6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128
    7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
    8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256
    9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
   10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512
   11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
   12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024
   13 conv   1024  3 x 3 / 1    13 x  13 x1024   ->    13 x  13 x1024
   14 conv    125  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 125
   15 detection
Loading weights from tiny-yolo-voc.weights...Done!
data/person.jpg: Predicted in 47.305035 seconds.
bird: 69%
dog: 82%
traffic light: 52%
Not compiled with OpenCV, saving to predictions.png instead

 

 
使用完整、正确的方式,检测的结果为:
root@xilinx-zc706-2017_2:/mnt# ./detect.elf detector test cfg/voc.data cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/person.jpg
layer     filters    size              input                output
    0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16
    1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
    2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32
    3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
    4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64
    5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
    6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128
    7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
    8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256
    9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
   10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512
   11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
   12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024
   13 conv   1024  3 x 3 / 1    13 x  13 x1024   ->    13 x  13 x1024
   14 conv    125  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 125
   15 detection
Loading weights from tiny-yolo-voc.weights...Done!
data/person.jpg: Predicted in 47.306183 seconds.
person: 69%
sheep: 82%
cow: 52%
Not compiled with OpenCV, saving to predictions.png instead

 

 
 
也可以用来做分类:
root@xilinx-zc706-2017_2:/mnt# ./detect.elf classifier predict cfg/imagenet1k.data cfg/darknet.cfg darknet.weights data/dog.jpg
layer     filters    size              input                output
    0 conv     16  3 x 3 / 1   224 x 224 x   3   ->   224 x 224 x  16
    1 max          2 x 2 / 2   224 x 224 x  16   ->   112 x 112 x  16
    2 conv     32  3 x 3 / 1   112 x 112 x  16   ->   112 x 112 x  32
    3 max          2 x 2 / 2   112 x 112 x  32   ->    56 x  56 x  32
    4 conv     64  3 x 3 / 1    56 x  56 x  32   ->    56 x  56 x  64
    5 max          2 x 2 / 2    56 x  56 x  64   ->    28 x  28 x  64
    6 conv    128  3 x 3 / 1    28 x  28 x  64   ->    28 x  28 x 128
    7 max          2 x 2 / 2    28 x  28 x 128   ->    14 x  14 x 128
    8 conv    256  3 x 3 / 1    14 x  14 x 128   ->    14 x  14 x 256
    9 max          2 x 2 / 2    14 x  14 x 256   ->     7 x   7 x 256
   10 conv    512  3 x 3 / 1     7 x   7 x 256   ->     7 x   7 x 512
   11 max          2 x 2 / 2     7 x   7 x 512   ->     4 x   4 x 512
   12 conv   1024  3 x 3 / 1     4 x   4 x 512   ->     4 x   4 x1024
   13 conv   1000  1 x 1 / 1     4 x   4 x1024   ->     4 x   4 x1000
   14 avg                        4 x   4 x1000   ->  1000
   15 softmax                                        1000
   16 cost                                           1000
Loading weights from darknet.weights...Done!
298 224
data/dog.jpg: Predicted in 7.463062 seconds.
malamute: 0.222252
Norwegian elkhound: 0.101390
German shepherd: 0.089522
keeshond: 0.068499
Eskimo dog: 0.067451
 

 

posted @ 2018-04-10 17:08  Osler  阅读(7842)  评论(3编辑  收藏  举报