BZOJ 2286 [Sdoi2011]消耗战 (虚树模板题)
题意
有\(n\)个点形成一棵树,边有权值。\(m\)次询问,每次询问,给出\(k\)个关键点,问把这些关键点都与\(1\)号节点断开(不连通)的最小断边的权值和。保证\(1\)号节点不是关键点。
\(n,m\le 250000,\sum k\le500000\)
题解
考虑只有一次询问怎么做。
直接树形\(dp\)就行了。用\(dp[u]\)表示把\(u\)这棵子树断开的最小代价。对于关键点必须断\(u\)到父亲的边。否则要么断当前点到根的路径上边权最小值,要么断子树内的边(代价为:子树内有关键点的儿子的\(dp\)值之和)。
我们可以把\(1\)号根节点到父亲的边权设为\(+\infty\),那么\(dp[1]\)就是答案。
然后考虑多组数据,发现\(\sum k\le 500000\),显然每次我们需要\(O(k)/O(k\log k)\)的算法。
那么就只需要建虚树\(DP\)就完事了,每次\(O(k\log k+k)\)。这道题还有一个性质,就是虚树中关键点子树中的关键点可忽略。建虚树的时候没有必要建出来。
CODE
#include <cstdio>
#include <vector>
#include <cctype>
#include <cstring>
#include <algorithm>
using namespace std;
inline void read(int &x) {
int flg = 1; char ch; while(!isdigit(ch=getchar())) if(ch=='-')flg=-flg;
for(x = ch-'0'; isdigit(ch=getchar()); x = x*10+ch-'0'); x *= flg;
}
typedef long long LL;
#define il inline
const int MAXN = 250005;
int n, q, m;
int fir[MAXN], to[MAXN<<1], nxt[MAXN<<1], wt[MAXN<<1], cnt; LL val[MAXN];
il void link(int u, int v, int w) {
to[++cnt] = v; nxt[cnt] = fir[u]; fir[u] = cnt; wt[cnt] = w;
to[++cnt] = u; nxt[cnt] = fir[v]; fir[v] = cnt; wt[cnt] = w;
}
int sz[MAXN], fa[MAXN], top[MAXN], dep[MAXN], son[MAXN], dfn[MAXN], tmr;
void dfs1(int u, int ff) {
dep[u] = dep[fa[u] = ff] + (sz[u] = 1);
for(int i = fir[u], v; i; i = nxt[i])
if((v=to[i]) != ff) {
val[v] = min(1ll*wt[i], val[u]);
dfs1(v, u); sz[u] += sz[v];
if(sz[v] > sz[son[u]]) son[u] = v;
}
}
void dfs2(int u, int tp) {
top[u] = tp; dfn[u] = ++tmr;
if(son[u]) dfs2(son[u], tp);
for(int i = fir[u], v; i; i = nxt[i])
if((v=to[i]) != fa[u] && v != son[u])
dfs2(v, v);
}
il int Lca(int u, int v) {
while(top[u] != top[v]) {
if(dep[top[u]] > dep[top[v]]) u = fa[top[u]];
else v = fa[top[v]];
}
return dep[u] > dep[v] ? v : u;
}
int c[MAXN], stk[MAXN], indx;
vector<int>e[MAXN];
il bool cmp(int i, int j) { return dfn[i] < dfn[j]; }
il void ins(int x) {
if(indx == 1) { stk[++indx] = x; return; }
int lca = Lca(x, stk[indx]);
if(lca == stk[indx]) return; //此题性质
while(indx > 1 && dfn[stk[indx-1]] >= dfn[lca])
e[stk[indx-1]].push_back(stk[indx]), --indx;
if(lca != stk[indx]) e[lca].push_back(stk[indx]), stk[indx] = lca;
stk[++indx] = x;
}
LL dp(int u) {
if(!e[u].size()) return val[u];
LL re = 0;
for(int i = e[u].size()-1; i >= 0; --i)
re += dp(e[u][i]);
e[u].clear();
return min(re, val[u]);
}
int main () {
read(n);
for(int i = 1, x, y, z; i < n; ++i)
read(x), read(y), read(z), link(x, y, z);
val[1] = 1ll<<60; dfs1(1, 0); dfs2(1, 1);
read(q);
while(q--) {
read(m);
for(int i = 1; i <= m; ++i) read(c[i]);
sort(c + 1, c + m + 1, cmp);
stk[indx=1] = 1; //1号点必须放进来
for(int i = 1; i <= m; ++i) ins(c[i]);
while(indx > 1) e[stk[indx-1]].push_back(stk[indx]), --indx;
printf("%lld\n", dp(1));
}
}