[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

题目描述

TT组数据,给出NN,MM,求x=1Ny=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newline
N,M<=10000000T<=10000N,M <= 10000000\newline T<= 10000

题目分析

直接开始变换,假设N<M
Ans=x=1Ny=1Mxy(x,y)=T=1N1Tx=1Ny=1Mxy[(x,y)==T]=T=1N1Tx=1NTy=1MTxyT2[(x,y)==1]=T=1NTx=1NTy=1MTxydx,dyμ(d)=d=1Nμ(d)T=1NTdxNTxdyMTy=d=1Nμ(d)T=1NTd2x=1NTdxy=1MTdy=d=1Nμ(d)T=1NTd2x=1NTdxy=1MTdyk=TdAns=k=1NTkμ(kT)kkTx=1Nkxy=1Mky=k=1NkTkμ(T)Tx=1Nkxy=1Mky Ans=\sum_{x=1}^N\sum_{y=1}^M \frac {xy}{(x,y)}\newline =\sum_{T=1}^N\frac 1T\sum_{x=1}^N\sum_{y=1}^Mxy[(x,y)==T]\newline =\sum_{T=1}^N\frac 1T\sum_{x=1}^{⌊\frac NT⌋}\sum_{y=1}^{⌊\frac MT⌋}xyT^2[(x,y)==1]\newline =\sum_{T=1}^NT\sum_{x=1}^{⌊\frac NT⌋}\sum_{y=1}^{⌊\frac MT⌋}xy\sum_{d|x,d|y}\mu(d)\newline =\sum_{d=1}^N\mu(d)\sum_{T=1}^{N}T\sum_{d|x}^{⌊\frac NT⌋}x\sum_{d|y}^{⌊\frac MT⌋}y\newline =\sum_{d=1}^N\mu(d)\sum_{T=1}^{N}Td^2\sum_{x=1}^{⌊\frac{⌊\frac NT⌋}d⌋}x\sum_{y=1}^{⌊\frac{⌊\frac MT⌋}d⌋}y\newline =\sum_{d=1}^N\mu(d)\sum_{T=1}^{N}Td^2\sum_{x=1}^{⌊\frac N{Td}⌋}x\sum_{y=1}^{⌊\frac M{Td}⌋}y\newline 此时令k=Td\newline Ans=\sum_{k=1}^N\sum_{T|k}\mu(⌊\frac kT⌋)k⌊\frac kT⌋\sum_{x=1}^{⌊\frac N{k}⌋}x\sum_{y=1}^{⌊\frac M{k}⌋}y\newline =\sum_{k=1}^Nk\sum_{T|k}\mu(T)T\sum_{x=1}^{⌊\frac N{k}⌋}x\sum_{y=1}^{⌊\frac M{k}⌋}y\newline
总算推完了…
此时只需要Θ(N)\Theta(N)线性筛出Tkμ(T)T\sum_{T|k}\mu(T)T,然后处理kTkμ(T)Tk\sum_{T|k}\mu(T)T的前缀和
x=1Nkxy=1Mky\sum_{x=1}^{⌊\frac N{k}⌋}x\sum_{y=1}^{⌊\frac M{k}⌋}y可以Θ(1)\Theta(1)
利用整除分块优化,时间复杂度为Θ(N+TN)\Theta(N+T\sqrt N)

AC code([bzoj 2693] jzptab)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 10000005, mod = 1e8+9;
int N, M;
namespace Mobius
{
	int mu[MAXN], Prime[MAXN], cnt;
	bool IsnotPrime[MAXN];
	int sum[MAXN];
	void init()
	{
		sum[1] = 1;
		for(int i = 2; i <= MAXN-5; i++)
		{
			if(!IsnotPrime[i]) Prime[++cnt] = i, sum[i] = 1-i;
			for(int j = 1; j <= cnt && i * Prime[j] <= MAXN-5; j++)
			{
				IsnotPrime[i * Prime[j]] = 1;
				if(i % Prime[j] == 0) { sum[i * Prime[j]] = sum[i]; break; }
				sum[i * Prime[j]] = 1ll * sum[i] * (1 - Prime[j]) % mod;
			}
		}
		for(int i = 1; i <= MAXN-5; i++)//前缀和
			sum[i] = (sum[i-1] + 1ll*sum[i]*i%mod) % mod;
	}
	int Sum(int N, int M)
	{
		return ((1ll*N*(N+1)/2) % mod) * ((1ll*M*(M+1)/2) % mod) % mod;
	}
	int calc(int N, int M)
	{
		int ret = 0;
		for(int i = 1, j; i <= N; i=j+1)//整除分块
		{
			j = min(N/(N/i), M/(M/i));
			ret = (ret + 1ll * (sum[j] - sum[i-1]) % mod * Sum(N/i, M/i) % mod) % mod;
		}
		return ret;
	}
}
using namespace Mobius;
int main ()
{
	int T; init();
	scanf("%d", &T);
	while(T--)
	{
		scanf("%d%d", &N, &M); if(N > M) swap(N, M);
		printf("%d\n", (calc(N, M) + mod) % mod);
	}
}
AC code([bzoj 2154] Crash的数字表格)

这道题有个恶心的地方,不能用MaxnMaxn来预处理,否则会TLETLE,要读入NN,MM后再O(N)O(N)处理

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 10000005, mod = 20101009;
int N, M;
namespace Mobius
{
	int mu[MAXN], Prime[MAXN], cnt;
	bool IsnotPrime[MAXN];
	int sum[MAXN];
	void init()
	{
		sum[1] = 1;
		for(int i = 2; i <= N; i++)
		{
			if(!IsnotPrime[i]) Prime[++cnt] = i, sum[i] = 1-i;
			for(int j = 1; j <= cnt && i * Prime[j] <= N; j++)
			{
				IsnotPrime[i * Prime[j]] = 1;
				if(i % Prime[j] == 0) { sum[i * Prime[j]] = sum[i]; break; }
				sum[i * Prime[j]] = 1ll * sum[i] * (1 - Prime[j]) % mod;
			}
		}
		for(int i = 1; i <= N; i++)
			sum[i] = (sum[i-1] + 1ll*sum[i]*i%mod) % mod;
	}
	int Sum(int N, int M)
	{
		return ((1ll*N*(N+1)/2) % mod) * ((1ll*M*(M+1)/2) % mod) % mod;
	}
	int calc(int N, int M)
	{
		int ret = 0;
		for(int i = 1, j; i <= N; i=j+1)
		{
			j = min(N/(N/i), M/(M/i));
			ret = (ret + 1ll * (sum[j] - sum[i-1]) % mod * Sum(N/i, M/i) % mod) % mod;
		}
		return ret;
	}
}
using namespace Mobius;
int main ()
{
	scanf("%d%d", &N, &M); if(N > M) swap(N, M); init();
	printf("%d\n", (calc(N, M) + mod) % mod);
}
posted @ 2019-12-14 14:52  _Ark  阅读(117)  评论(0编辑  收藏  举报