BZOJ 4503: 两个串 FFT

题意

aa串中找哪些地方出现了bbbb中有通配字符。


设第一个串aa的长度为nn,第二个串bb的长度为mm。下标从00开始。

首先我们把bb串中??的位置的值bib_i设为00。然后构造F(i)=j=0m1(a[i+j]b[j])2b[j]F(i)=\sum_{j=0}^{m-1}(a[i+j]-b[j])^2*b[j]

显然只有当且仅当F(i)=0F(i)=0时,在aaii位置开头的长度为mm的串能够与bb串匹配。

展开得到F(i)=j=0m1a[i+j]2b[j]2a[i+j]b[j]2+b[j]3F(i)=\sum_{j=0}^{m-1}a[i+j]^2\cdot b[j]-2\cdot a[i+j]\cdot b[j]^2+b[j]^3

bb反向就是F(i)=j=0m1a[i+j]2b[m1j]2a[i+j]b[m1j]2+b[mj1]3F(i)=\sum_{j=0}^{m-1}a[i+j]^2\cdot b[m-1-j]-2\cdot a[i+j]\cdot b[m-1-j]^2+b[m-j-1]^3

前面两个项是卷积形式FFT就行了,最后一项加起来是定值。

所以就可以做了。


另外一道题bzoj 4259: 残缺的字符串是一样的做法。只是aa里也有通配字符,那么F(i)F(i)再多乘一个a[i+j]a[i+j]就行了。

CODE

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1<<18;
const double Pi = acos(-1.);
typedef long double LD;
typedef long long LL;
struct cp {
	LD x, y;
	cp(){x=y=0;}
	cp(LD x, LD y):x(x), y(y){}
	inline cp operator +(const cp &o)const { return cp(x+o.x, y+o.y); }
	inline cp operator -(const cp &o)const { return cp(x-o.x, y-o.y); }
	inline cp operator *(const cp &o)const { return cp(x*o.x-y*o.y, x*o.y+y*o.x); }
}f[MAXN], g[MAXN];
char a[MAXN], b[MAXN];
int len, n, m, rev[MAXN]; LL ans[MAXN];
inline void init(int N) {
	for(len = 1; len < N; len<<=1);
	for(int i = 0; i < len; ++i) rev[i] = (rev[i>>1]>>1)|((len>>1)*(i&1));
}
inline void DFT(cp *arr, int flg) {
	for(int i = 0; i < len; ++i)if(i < rev[i])swap(arr[i], arr[rev[i]]);
	for(int i = 2; i <= len; i<<=1) {
		cp wn = cp(cos(2*Pi/i), flg*sin(2*Pi/i));
		for(int j = 0; j < len; j += i) {
			cp w = cp(1, 0);
			for(int k = j; k < j + i/2; ++k, w = w * wn) {
				cp x = arr[k], y = w * arr[k + i/2];
				arr[k] = x + y;
				arr[k + i/2] = x - y;
			}
		}
	}
	if(!~flg) for(int i = 0; i < len; ++i) arr[i].x /= len;
}
int main () {
	scanf("%s%s", a, b);
	n = strlen(a);
	m = strlen(b);
	init(n+m);
	
	LL sum = 0;
	for(int i = 0; i < m; ++i)
		b[i] = b[i] == '?' ? 0 : b[i],
		sum += b[i]*b[i]*b[i];

	for(int i = 0; i < n; ++i) f[i].x = a[i]*a[i];
	for(int i = 0; i < m; ++i) g[i].x = b[m-i-1];
	DFT(f, 1), DFT(g, 1);
	for(int i = 0; i < len; ++i) f[i] = f[i] * g[i];
	DFT(f, -1);
	for(int i = m-1; i < len; ++i) ans[i-m+1] += round(f[i].x);
	
	memset(f, 0, sizeof f); for(int i = 0; i < n; ++i) f[i].x = a[i];
	memset(g, 0, sizeof g); for(int i = 0; i < m; ++i) g[i].x = b[m-i-1]*b[m-i-1];
	DFT(f, 1), DFT(g, 1);
	for(int i = 0; i < len; ++i) f[i] = f[i] * g[i];
	DFT(f, -1);
	for(int i = m-1; i < len; ++i) ans[i-m+1] -= 2*round(f[i].x);
	
	int cnt = 0;
	for(int i = 0; i <= n-m; ++i)
		if(ans[i] + sum == 0) ++cnt;
	printf("%d\n", cnt);
	for(int i = 0; i <= n-m; ++i)
		if(ans[i] + sum == 0) printf("%d\n", i);
}
posted @ 2019-12-14 14:50  _Ark  阅读(164)  评论(0编辑  收藏  举报