上一页 1 2 3 4 5 6 7 8 9 10 ··· 12 下一页
摘要: ## 思路 ~~最近熬夜打 CF,视力下降了。没看到题目里给了第一位和最后一位必定是 $0$ 和 $1$,导致想了半天。~~ 考虑枚举字符串的位置 $i$。 首先如果遇到了两个串第 $i$ 位都是 $1$,那么可以直接覆盖中间的片段,一定能成功。 如果遇到不同的位置,考虑找到最近的 $0$ 与第一位 阅读全文
posted @ 2023-09-04 10:09 One_JuRuo 阅读(10) 评论(0) 推荐(0) 编辑
摘要: ## 思路 诈骗题,看着很难,其实是一道大水题。 常识告诉我们,对于一个两位数,首位无论是几,都一定存在质数。 所以我们就把输入的字符串第一位作为质数的第一位,遍历字符串,找到刚好与第一位组成质数就行了。 ## AC code ```cpp #include using namespace std; 阅读全文
posted @ 2023-09-04 10:09 One_JuRuo 阅读(13) 评论(0) 推荐(0) 编辑
摘要: ## 思路 首先考虑保证每行的黑白数量一样,横着的一定是贡献一黑一白,所以只用考虑竖着的,同理竖着的任何方案也不会影响横着的要求。 因为两个同行的竖着的颜色可以互换,所以在满足条件的情况下,谁黑谁白无所谓。 考虑从上往下满足,因为 ```D``` 的格子已经在上一行中确定了,所以可以在上一行时就先把 阅读全文
posted @ 2023-08-31 16:29 One_JuRuo 阅读(36) 评论(0) 推荐(0) 编辑
摘要: ## 思路 乍一看,感觉无从下手,于是就先列举了几个例子: ``` 02 10 21 02 013 201 320 132 013 12345 01234 50123 45012 34501 23450 12345 ``` 容易发现周期是 $n+1$,下面解释理由: 首先因为数量 $n$,且两两各不 阅读全文
posted @ 2023-08-31 16:29 One_JuRuo 阅读(17) 评论(0) 推荐(0) 编辑
摘要: ## 思路 对于每次操作,会把序列分成两个部分,两部分之间不会排序。 考虑仅每次排一个数字,理由如下: 假设已经排好了 $1,2,3\cdots i-1$ 的顺序,对于数字 $i$,如果 $i+1$ 在该数字的前面,那么 $k$ 应选择为 $i+1$,这样才能排好 $i$ 和 $i+1$。如果选择的 阅读全文
posted @ 2023-08-31 16:28 One_JuRuo 阅读(12) 评论(0) 推荐(0) 编辑
摘要: ## 思路 ~~最开始没看懂题意,还想了会儿。~~ 容易发现,如果某个时刻存在总人数是满的,那么一定所有人都看到了,输出 ```YES```。 否则的话,如果不算减少的人数,总人数超过了 $n$,即认为每次新增的人都是之前没看过的人(虽然最终可能会超过 $n$,不符合情况),这样的话可能所有人都看到 阅读全文
posted @ 2023-08-31 16:28 One_JuRuo 阅读(22) 评论(0) 推荐(0) 编辑
摘要: ## 思路 观察发现 $x$,$y$,$z$ 都可以很大,所以如果直接用队列老老实实地操作,肯定过不了。 因为每次加入都是 $1,2,3,\cdots x$ 所以这段是连续的,所以我们考虑一段一段的存入队列,记录每一段的左右端点。 操作 $2$ 的删除,就一段一段地删除,如果删不完一段,就改这一段的 阅读全文
posted @ 2023-08-29 12:34 One_JuRuo 阅读(77) 评论(0) 推荐(0) 编辑
摘要: ## 思路 一定要注意看题啊,我就是因为没看到 ```该玩家可以出任意张杀和斩``` 和 ```玩家也可以不出牌,直接进入对方的回合``` 导致赛时想了半天的特殊情况,头都快薅秃了。 因为一次可以出任意张杀和斩,所以当 $c_1>d_2$ 或者 $c_3>d_1$ 时,小 C 可以直接通过出杀和斩赢 阅读全文
posted @ 2023-08-29 12:34 One_JuRuo 阅读(34) 评论(0) 推荐(0) 编辑
摘要: ## 思路 第一时间想到的是暴力,因为同一行的互不影响,所以第一行的 $1$ 一定都需要操作,然后把后续的状态更新,再操作第二行的所有的 $1$,但是很可惜是 $O(n^4)$ 的复杂度,必然会 TLE。 所以思考其他的办法,考虑到可以统计有多少操作更改了这个位置的状态,所以可以使用一个类似前缀和的 阅读全文
posted @ 2023-08-29 12:33 One_JuRuo 阅读(16) 评论(0) 推荐(0) 编辑
摘要: ## 思路 刚拿到题,想了一些方法但都被推翻了,在这里列举出来,并给出反例: - 每次减去最小的因数,反例:$1024$ 等形如 $a^k$ 的数,每次都会减去 $a$ 导致 $a$ 的出现次数超过 $2$ 次。 - 每次减去大于等于 $\sqrt x$ 的因子,$x$ 为目前的数,并特判指数的情况 阅读全文
posted @ 2023-08-29 12:33 One_JuRuo 阅读(11) 评论(0) 推荐(0) 编辑
上一页 1 2 3 4 5 6 7 8 9 10 ··· 12 下一页