【Python数据分析】Pandas模块下的Series与DataFrame

1.什么是Pandas

Pandas是基于Numpy构建,专门为数据分析而存在的!

  • 一维数组Series + 二维数组DataFrame
  • 可以直接读取数据并处理(简单高效)
  • 支持多种数据库
  • 支持多种分析算法

2.数据结构Series

2.1 基本概念与创建

2.1.1 基本概念

Series是带有数据标签的一维数组,可以保存任何数据类型(整数、字符串、浮点数、Python对象等),轴标签统称为索引

  1. index查看series索引,类型为rangeindex,其结果是一个迭代器
  2. values查看series值,类型是ndarray
  3. series与ndarray相比,是一个自带索引index的数组(一维数组 + 对应索引)
  4. series与ndarray比较相似,索引切片功能差别不大
  5. series和字典相比,series更像一个有序的字典,其索引原理与字典相似
import numpy as np
import pandas as pd
ar = np.random.rand(5) # 生成随机列表数据
s = pd.Series(ar) 

print(ar)
print(s)
print('*'*50) # 分割线
print(list(s.index)) 
print(s.values)

输出结果:

2.1.2 创建

# 创建方法1:通过字典创建,字典的值是key就是index,values就是values
dict = {"a":1,"b":2,2:2}
s = pd.Series(dict)
print(s)

# 创建方法2:通过一维数组创建
arr = np.random.rand(4)
s = pd.Series(arr, index = list('abcd'))
print(s)

# 创建方法3:通过变量创建
s = pd.Series(100, index=list("abcd"))
print(s)

2.2 索引

2.2.1 位置下标

s = pd.Series(np.random.rand(5))
print(s)
print(s[0],type(s[0]),s[0].dtype)
print(float(s[0]),type(float(s[0])))

输出结果为numpy.float格式,可以通过float()函数转换为python float格式。

2.2.2 标签索引

s = pd.Series(np.random.rand(5), index = ['a','b','c','d','e'])
print(s)
print(s['a'],type(s['a']),s['a'].dtype)
# 方法类似下标索引,用[]表示,内写上index,注意index是字符串

sci = s[['a','b','e']]
print(sci,type(sci))

如果需要选择多个标签的值,用[[]]来表示(相当于[]中包含一个列表),多标签索引结果是新的数组。

2.2.3 切片索引

s1 = pd.Series(np.random.rand(5))
s2 = pd.Series(np.random.rand(5), index = ['a','b','c','d','e'])
print(s1[1:4],s1[4])
print(s2['a':'c'],s2['c'])
print(s2[0:3],s2[3])

print('-'*20)
# 注意:用index做切片是末端包含

print(s2[:-1])
print(s2[::2])
# 下标索引做切片,和list写法一样

2.2.4 布尔索引


s = pd.Series(np.random.rand(3)*100)
s[4] = None  # 添加一个空值
print(s)
bs1 = s > 50
bs2 = s.isnull()
bs3 = s.notnull()
print(bs1, type(bs1), bs1.dtype)
print(bs2, type(bs2), bs2.dtype)
print(bs3, type(bs3), bs3.dtype)
print('-----')
# 数组做判断之后,返回的是一个由布尔值组成的新的数组
# .isnull() / .notnull() 判断是否为空值 (None代表空值,NaN代表有问题的数值,两个都会识别为空值)

print(s[s > 50])
print(s[bs3])
# 布尔型索引方法:用[判断条件]表示,其中判断条件可以是 一个语句,或者是 一个布尔型数组!

2.3 基本技巧

2.3.1 数据查看

s = pd.Series(np.random.rand(100)) 
print(s.head(3)) # 查看前3条,默认查看条数为5条
print(s.tail()) # 查看尾部数据

2.3.2 重新索引reindex

# reindex将会根据索引重新排序,如果当前索引不存在,则引入缺失值

s = pd.Series(np.random.rand(3), index = ['a','b','c'])
print(s)
s1 = s.reindex(['c','b','a','d'])
print(s1)
# reindex()中也是写列表
# 这里'd'索引不存在,所以值为NaN

s2 = s.reindex(['c','b','a','d'], fill_value = 0)
print(s2)
# fill_value参数:填充缺失值的值

2.3.3 对齐

s1 = pd.Series(np.random.rand(3), index = ['Jack','Marry','Tom'])
s2 = pd.Series(np.random.rand(3), index = ['Wang','Jack','Marry'])
print(s1)
print(s2)
print(s1+s2)
# Series 和 ndarray 之间的主要区别是,Series 上的操作会根据标签自动对齐
# index顺序不会影响数值计算,以标签来计算
# 空值和任何值计算结果扔为空值

2.3.4 删除

s = pd.Series(np.random.rand(5), index = list('ngjur'))
print(s)
s1 = s.drop('n')
s2 = s.drop(['g','j'])
print(s1)
print(s2)
print(s)
# drop 删除元素之后返回副本(inplace=False)

2.3.5 添加

s1 = pd.Series(np.random.rand(5))
s2 = pd.Series(np.random.rand(5), index = list('ngjur'))
print(s1)
print(s2)
s1[5] = 100
s2['a'] = 100
print(s1)
print(s2)
print('-----')
# 直接通过下标索引/标签index添加值

s3 = s1.append(s2)
print(s3)
print(s1)
# 通过.append方法,直接添加一个数组
# .append方法生成一个新的数组,不改变之前的数组

2.3.6 修改

# 修改

s = pd.Series(np.random.rand(3), index = ['a','b','c'])
print(s)
s['a'] = 100
s[['b','c']] = 200
print(s)
# 通过索引直接修改,类似序列

3.数据结构DataFrame

3.1 基本概念与创建

3.1.1 基本概念

Dataframe是一个表格型的数据结构,“带有标签的二维数组”,Dataframe带有index(行标签)和columns(列标签)

data = {'name':['Jack','Tom','Mary'],
        'age':[18,19,20],
       'gender':['m','m','w']}
frame = pd.DataFrame(data)
print(frame)  
print(type(frame))
print(frame.index,'\n该数据类型为:',type(frame.index))
print(frame.columns,'\n该数据类型为:',type(frame.columns))
print(frame.values,'\n该数据类型为:',type(frame.values))
# 查看数据,数据类型为dataframe
# index查看行标签
# columns查看列标签
# values查看值,数据类型为ndarray

3.1.2 创建

# 创建方法1:由数组/list组成的字
# 创建方法:pandas.Dataframe()

data1 = {'a':[1,2,3],
        'b':[3,4,5],
        'c':[5,6,7]}
data2 = {'one':np.random.rand(3),
        'two':np.random.rand(3)}  
print(data1)
print(data2)
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
print(df1)
print(df2)
# 由数组/list组成的字典 创建Dataframe,columns为字典key,index为默认数字标签
# 字典的值的长度必须保持一致!

df1 = pd.DataFrame(data1, columns = ['b','c','a','d'])
print(df1)
df1 = pd.DataFrame(data1, columns = ['b','c'])
print(df1)
# columns参数:可以重新指定列的顺序,格式为list,如果现有数据中没有该列(比如'd'),则产生NaN值
# 如果columns重新指定时候,列的数量可以少于原数据

df2 = pd.DataFrame(data2, index = ['f1','f2','f3']) 
print(df2)
# index参数:重新定义index,格式为list,长度必须保持一致

--------------------------------------------------------分割线-----------------------------------------------------------------
# Dataframe 创建方法2:由Series组成的字典

data1 = {'one':pd.Series(np.random.rand(2)),
        'two':pd.Series(np.random.rand(3))}  # 没有设置index的Series
data2 = {'one':pd.Series(np.random.rand(2), index = ['a','b']),
        'two':pd.Series(np.random.rand(3),index = ['a','b','c'])}  # 设置了index的Series
print(data1)
print(data2)
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
print(df1)
print(df2)
# 由Seris组成的字典 创建Dataframe,columns为字典key,index为Series的标签(如果Series没有指定标签,则是默认数字标签)
# Series可以长度不一样,生成的Dataframe会出现NaN值

--------------------------------------------------------分割线------------------------------------------------------------------
# Dataframe 创建方法3:通过二维数组直接创建

ar = np.random.rand(9).reshape(3,3)
print(ar)
df1 = pd.DataFrame(ar)
df2 = pd.DataFrame(ar, index = ['a', 'b', 'c'], columns = ['one','two','three'])  # 可以尝试一下index或columns长度不等于已有数组的情况
print(df1)
print(df2)
# 通过二维数组直接创建Dataframe,得到一样形状的结果数据,如果不指定index和columns,两者均返回默认数字格式
# index和colunms指定长度与原数组保持一致

--------------------------------------------------------分割线------------------------------------------------------------------
# Dataframe 创建方法4:由字典组成的列表

data = [{'one': 1, 'two': 2}, {'one': 5, 'two': 10, 'three': 20}]
print(data)
df1 = pd.DataFrame(data)
df2 = pd.DataFrame(data, index = ['a','b'])
df3 = pd.DataFrame(data, columns = ['one','two'])
print(df1)
print(df2)
print(df3)
# 由字典组成的列表创建Dataframe,columns为字典的key,index不做指定则为默认数组标签
# colunms和index参数分别重新指定相应列及行标签
--------------------------------------------------------分割线------------------------------------------------------------------
# Dataframe 创建方法5:由字典组成的字典

data = {'Jack':{'math':90,'english':89,'art':78},
       'Marry':{'math':82,'english':95,'art':92},
       'Tom':{'math':78,'english':67}}
df1 = pd.DataFrame(data)
print(df1)
# 由字典组成的字典创建Dataframe,columns为字典的key,index为子字典的key

df2 = pd.DataFrame(data, columns = ['Jack','Tom','Bob'])
df3 = pd.DataFrame(data, index = ['a','b','c'])
print(df2)
print(df3)
# columns参数可以增加和减少现有列,如出现新的列,值为NaN
# index在这里和之前不同,并不能改变原有index,如果指向新的标签,值为NaN (非常重要!)


3.2 索引

3.2.1 选择行与列

df = pd.DataFrame(np.random.rand(12).reshape(3,4)*100,
                   index = ['one','two','three'],
                   columns = ['a','b','c','d'])
print(df)

data1 = df['a']
data2 = df[['a','c']]
print(data1,type(data1))
print(data2,type(data2))
print('-----')
# 按照列名选择列,只选择一列输出Series,选择多列输出Dataframe

data3 = df.loc['one']
data4 = df.loc[['one','two']]
print(data2,type(data3))
print(data3,type(data4))
# 按照index选择行,只选择一行输出Series,选择多行输出Dataframe

3.2.2 选择列

# 一般用于选择列,也可以选择行

df = pd.DataFrame(np.random.rand(12).reshape(3,4)*100,
                   index = ['one','two','three'],
                   columns = ['a','b','c','d'])
print(df)
print('-----')

data1 = df['a']
data2 = df[['b','c']]  # 尝试输入 data2 = df[['b','c','e']]
print(data1)
print(data2)
# df[]默认选择列,[]中写列名(所以一般数据colunms都会单独制定,不会用默认数字列名,以免和index冲突)
# 单选列为Series,print结果为Series格式
# 多选列为Dataframe,print结果为Dataframe格式

data3 = df[:1]
#data3 = df[0]
#data3 = df['one']
print(data3,type(data3))
# df[]中为数字时,默认选择行,且只能进行切片的选择,不能单独选择(df[0])
# 输出结果为Dataframe,即便只选择一行
# df[]不能通过索引标签名来选择行(df['one'])

# 核心笔记:df[col]一般用于选择列,[]中写列名

3.2.3 按index选择行

df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   index = ['one','two','three','four'],
                   columns = ['a','b','c','d'])
df2 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   columns = ['a','b','c','d'])
print(df1)
print(df2)
print('-----')

data1 = df1.loc['one']
data2 = df2.loc[1]
print(data1)
print(data2)
print('单标签索引\n-----')
# 单个标签索引,返回Series

data3 = df1.loc[['two','three','five']]
data4 = df2.loc[[3,2,1]]
print(data3)
print(data4)
print('多标签索引\n-----')
# 多个标签索引,如果标签不存在,则返回NaN
# 顺序可变

data5 = df1.loc['one':'three']
data6 = df2.loc[1:3]
print(data5)
print(data6)
print('切片索引')
# 可以做切片对象
# 末端包含

# 核心笔记:df.loc[label]主要针对index选择行,同时支持指定index,及默认数字index

3.2.4 按照整数位置选择行

# df.iloc[] - 按照整数位置(从轴的0到length-1)选择行
# 类似list的索引,其顺序就是dataframe的整数位置,从0开始计

df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   index = ['one','two','three','four'],
                   columns = ['a','b','c','d'])
print(df)
print('------')

print(df.iloc[0])
print(df.iloc[-1])
#print(df.iloc[4])
print('单位置索引\n-----')
# 单位置索引
# 和loc索引不同,不能索引超出数据行数的整数位置

print(df.iloc[[0,2]])
print(df.iloc[[3,2,1]])
print('多位置索引\n-----')
# 多位置索引
# 顺序可变

print(df.iloc[1:3])
print(df.iloc[::2])
print('切片索引')
# 切片索引
# 末端不包含

3.2.5 布尔型索引

# 布尔型索引
# 和Series原理相同

df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   index = ['one','two','three','four'],
                   columns = ['a','b','c','d'])
print(df)
print('------')

b1 = df < 20
print(b1,type(b1))
print(df[b1])  # 也可以书写为 df[df < 20]
print('------')
# 不做索引则会对数据每个值进行判断
# 索引结果保留 所有数据:True返回原数据,False返回值为NaN

b2 = df['a'] > 50
print(b2,type(b2))
print(df[b2])  # 也可以书写为 df[df['a'] > 50]
print('------')
# 单列做判断
# 索引结果保留 单列判断为True的行数据,包括其他列

b3 = df[['a','b']] > 50
print(b3,type(b3))
print(df[b3])  # 也可以书写为 df[df[['a','b']] > 50]
print('------')
# 多列做判断
# 索引结果保留 所有数据:True返回原数据,False返回值为NaN

b4 = df.loc[['one','three']] < 50
print(b4,type(b4))
print(df[b4])  # 也可以书写为 df[df.loc[['one','three']] < 50]
print('------')
# 多行做判断
# 索引结果保留 所有数据:True返回原数据,False返回值为NaN

3.2.6 多重索引

# 多重索引:比如同时索引行和列
# 先选择列再选择行 —— 相当于对于一个数据,先筛选字段,再选择数据量

df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   index = ['one','two','three','four'],
                   columns = ['a','b','c','d'])
print(df)
print('------')

print(df['a'].loc[['one','three']])   # 选择a列的one,three行
print(df[['b','c','d']].iloc[::2])   # 选择b,c,d列的one,three行
print(df[df['a'] < 50].iloc[:2])   # 选择满足判断索引的前两行数据

3.3 基本技巧

3.3.1 数据查看与转置

# 数据查看、转置

df = pd.DataFrame(np.random.rand(16).reshape(8,2)*100,
                   columns = ['a','b'])
print(df.head(2))
print(df.tail())
# .head()查看头部数据
# .tail()查看尾部数据
# 默认查看5条

print(df.T)
# .T 转置

3.3.2 添加与修改

# 添加与修改

df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   columns = ['a','b','c','d'])
print(df)

df['e'] = 10
df.loc[4] = 20
print(df)
# 新增列/行并赋值

df['e'] = 20
df[['a','c']] = 100
print(df)
# 索引后直接修改值

3.3.3 删除

# 删除  del / drop()

df = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   columns = ['a','b','c','d'])
print(df)

del df['a']
print(df)
print('-----')
# del语句 - 删除列

print(df.drop(0))
print(df.drop([1,2]))
print(df)
print('-----')
# drop()删除行,inplace=False → 删除后生成新的数据,不改变原数据

print(df.drop(['d'], axis = 1))
print(df)
# drop()删除列,需要加上axis = 1,inplace=False → 删除后生成新的数据,不改变原数据

3.3.4 对齐

# 对齐

df1 = pd.DataFrame(np.random.randn(10, 4), columns=['A', 'B', 'C', 'D'])
df2 = pd.DataFrame(np.random.randn(7, 3), columns=['A', 'B', 'C'])
print(df1 + df2)
# DataFrame对象之间的数据自动按照列和索引(行标签)对齐

3.3.5 对齐

# 排序1 - 按值排序 .sort_values
# 同样适用于Series

df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                   columns = ['a','b','c','d'])
print(df1)
print(df1.sort_values(['a'], ascending = True))  # 升序
print(df1.sort_values(['a'], ascending = False))  # 降序
print('------')
# ascending参数:设置升序降序,默认升序
# 单列排序

df2 = pd.DataFrame({'a':[1,1,1,1,2,2,2,2],
                  'b':list(range(8)),
                  'c':list(range(8,0,-1))})
print(df2)
print(df2.sort_values(['a','c']))
# 多列排序,按列顺序排序
# 排序2 - 索引排序 .sort_index

df1 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                  index = [5,4,3,2],
                   columns = ['a','b','c','d'])
df2 = pd.DataFrame(np.random.rand(16).reshape(4,4)*100,
                  index = ['h','s','x','g'],
                   columns = ['a','b','c','d'])
print(df1)
print(df1.sort_index())
print(df2)
print(df2.sort_index())
# 按照index排序
# 默认 ascending=True, inplace=False
posted @ 2020-02-07 21:30  OLIVER_QIN  阅读(334)  评论(0编辑  收藏  举报