Fork me on GitHub
打赏

【吉比特】G-bits2017技术类岗位编程题

求素数

输入M、N,1 < M < N < 1000000,求区间[M,N]内的所有素数的个数。素数定义:除了1以外,只能被1和自己整除的自然数称为素数

输入描述:

两个整数M,N

输出描述:

区间内素数的个数
示例1

输入

2 10

输出

4

 

#include<iostream>
#define K 1000001
using namespace std;
char p[K+1] = {1,1,0};  //数组前三个数 0 1 2 分别为 合数、合数、素数 
int main() 
{
    int i,j;
    for(i = 2; i <= K/10; ++i) //防止p[i*j]越界 
    {
        if(!p[i])
            for(j = 2; i*j <=K ; ++j)  //判断是否为合数 
                p[i*j] = 1; //是合数    
     } 
    
    int M,N,count;
    cin>>M;
    cin>>N;
    count=0;
    for(i=M; i<=N; i++)
        if(!p[i])  //如果p[i]为合数,则跳过,如果为素数,执行count 
            count++;
    cout<<count;
}

 

分析:

由素数的概念在大于1的整数中,只能被1和自己本身整除的数。

在大于1的整数中,只要类似 m*n 得到的数都不是素数。用 1 表示非素数,用 0 表示素数。则: p[i*j] = 1 即为找出所有的非素数。

K/10 是为了防止 p[i*j] 越界,当然除以20、30也是可以的!

 

参考资料链接:

【模板小程序】求小于等于N范围内的质数

牛客网解答

 

最大差值

给定一个未排序的数列,找到此数列在已排序状态下的两个相邻值的最大差值,少于两个值时返回0。例如:给定数列 [1,3,2,0,1,6,8] 则 最大差值为3。注意:请尽量使用时间复杂度为O(n)的方案。

输入描述:

第一行输入单个整数N作为数列的大小,第二行输入所有数列中的元素M,共N个。0 < N <= 1000000, 0 < M < 2100000000

输出描述:

数列的最大差值
示例1

输入

3
1 10 5

输出

5

 

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main(){
    int N;
    while(cin>>N){
        vector<int> array(N);
        for(int i=0;i<(int)array.size();++i){
            cin>>array[i];
        }
    sort(array.begin(),array.end());  //先排序 
    vector<int> chazhi(N);  //开一个数组,存入相邻元素差值
    chazhi[0] = 0;  //数组初始化 
    int max_chazhi = 0;
    for(int i=1;i<(int)chazhi.size();++i){
        chazhi[i]=array[i]-array[i-1];
        max_chazhi = chazhi[i]>max_chazhi ? chazhi[i]: max_chazhi;
        }
    cout<<max_chazhi<<endl;
    }
    
    return 0;
}

 

分析:

研究了一下别人的代码,整体思路就是先对输入的数列进行从小到大的排序,接着创建一个数组,存入排序后相邻两个数之间的差值,接着再挨个比较大小,最后输出最大差值。

 

参考资料链接:

牛客网解答

vector

algorithm->sort

 

posted @ 2018-03-29 21:56  Zoctopus_Zhang  阅读(664)  评论(0编辑  收藏  举报
// function btn_donateClick() { var DivPopup = document.getElementById('Div_popup'); var DivMasklayer = document.getElementById('div_masklayer'); DivMasklayer.style.display = 'block'; DivPopup.style.display = 'block'; var h = Div_popup.clientHeight; with (Div_popup.style) { marginTop = -h / 2 + 'px'; } } function MasklayerClick() { var masklayer = document.getElementById('div_masklayer'); var divImg = document.getElementById("Div_popup"); masklayer.style.display = "none"; divImg.style.display = "none"; } setTimeout( function () { document.getElementById('div_masklayer').onclick = MasklayerClick; document.getElementById('btn_donate').onclick = btn_donateClick; var a_gzw = document.getElementById("guanzhuwo"); a_gzw.href = "javascript:void(0);"; $("#guanzhuwo").attr("onclick","follow('33513f9f-ba13-e011-ac81-842b2b196315');"); }, 900);