Agc010_D Decrementing
今天本人因调了上篇博客的题而脑壳不适,不想颓题,因此有了这篇博客。
但是博客毕竟得讲点什么,想想有没有什么代码短的。
哦,好像有,就Agc010_D Decrementing好了。
Alice和Bob又在玩游戏了,这次他们有$N$个数。
每次操作为:
1.在所有不小于$2$的数中挑一个减去$1$。
2.所有数除$d$,$d$为所有数的最大公约数。
不能操作者输,如果先手必胜则输入$First$,否则输出$Second$。
其中$N\leq 10^5$,每个数$\leq 10^9$。
乍一看令人十分懵逼,但是我们很容易的发现有几个显然测结论:
1、当最小的数是1时,胜负至于所有数之和$-N$的奇偶性有关
2、有效的除$d$操作不超过$log_210^9=30$次。
我们先定义奇偶性优势:按照每一步操作恰好改变一次奇偶性,最终能获取胜利(即自己操作时有奇数个偶数)。
奇偶性劣势则反之。
然后进一步思考,对于当前操作的人:
若当前的和奇偶性状况对自己有利,则尽量这一奇偶性不改变。我们显然能找到奇数个偶数,对任意一个进行操作之后,$d$一定是个奇数,因此除$d$操作对奇偶性没有影响,并且原先的偶数不会变成奇数,并且会新产生一个奇数。由于任意操作完的局面不可能全是偶数(保证$gcd=1$),因此后手操作的人一定面对至少$2$个奇数,而奇数的数量只会一直增加,因而无论怎么操作$d$均为奇数都无法改变奇偶性劣势,因此必胜。
若当前自己处在奇偶性劣势,则必须考虑通过除$d$操作改变奇偶性。我们发现,这一操作能够实现仅当所有剩余的数中有且仅有一个奇数,且这一奇数大于$1$时才有可能。我们不得不对这个数进行操作,因此会先把原来的奇数减去$1$,使得所有数都为偶数,再新产生至少$1$个奇数。这时我们并不能确定获胜情况,因此我们需要递归地进入下一层。
由于结论$2$,最多会出现$30$层,每层只需要扫一遍,因此最终复杂度是$O(n\space log A_i)$。
#include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #define LL long long #define M 100050 using namespace std; LL read(){ LL nm=0,fh=1; char cw=getchar(); for(;!isdigit(cw);cw=getchar()) if(cw=='-') fh=-fh; for(;isdigit(cw);cw=getchar()) nm=nm*10+(cw-'0'); return nm*fh; } LL gcd(LL x,LL y){return y==0?x:gcd(y,x%y);} LL n,p[M],G[M],F[M],sq[31]; void win(LL x){puts(x?"Second":"First");exit(0);} void solve(LL now){ LL pos=0,sum=0,m=0,tot=0; for(LL i=1;i<=n;i++) sum+=p[i],m+=(p[i]&1),pos+=(p[i]&1)*i; if((sum&1)^(n&1)) win(now); else if((m==1&&p[pos]==1)||m>1) win(now^1); for(LL i=1;i<=n;i++) tot=gcd(tot,p[i]-(p[i]&1)); for(LL i=1;i<=n;i++) p[i]=(p[i]-(p[i]&1))/tot; solve(now^1); } int main(){ n=read(),sq[0]=1; for(LL i=1;i<31;i++) sq[i]=sq[i-1]*2ll; for(LL i=1;i<=n;i++) p[i]=read(); sort(p+1,p+n+1),solve(0); return 0; }