C#使用cplex求解简单线性规划问题(Cplex系列-教程二)
若还未在项目中添加cplex的引用,可以参阅上一篇文章。本文主要介绍利用C#求解线性规划的步骤,对线性规划模型进行数据填充的两种方法,以及一些cplex函数的功能和用法。包括以下几个步骤:
描述
先花时间理清问题。明确决策变量及其取值范围,目标函数,约束条件,已知的数据。后面代码的编写也是沿着这个思路,先理清问题后面的工作会更有效率。以如下问题为例:
先建立数学模型:
令:i产品在j机器上加工的小时数为xij
决策变量:x11,x12,x21,x22
目标函数:Min(z)=50x11+70x12+50x21+70x22
约束条件:
x12+x22<=112,
x11+x21<=104,
20x11+40x12=3200,
10x21+30x22=2000,
xij>=0(i=1,2;j=1,2)
模型
创建模型对象
//实例化一个空模型 Cplex cplexModel = new Cplex();
方法1:使用行方法填充模型
//生成决策变量并约束范围 INumVar[][] deVar=new INumVar[1][];//交叉数组用于存储决策变量 double[]lb= {0.0, 0.0, 0.0,0.0}; //lb(low bound)与ub定义决策变量的上下界 double[]ub={double.MaxValue,double.MaxValue,double.MaxValue,double.MaxValue}; string []deVarName={"x11","x12","x21","x22"};//决策变量名 INumVar[]x=cplexModel.NumVarArray(4,lb,ub,deVarName);//生成决策变量 deVar[0]=x; //生成目标函数 double[]objCoef={50.0,70.0,50.0,70.0};//目标函数系数(object coefficient) cplexModel.AddMinimize(cplexModel.ScalProd(x, objCoef));//数量相乘(scalar product) //生成约束条件 IRange[][] rng = new IRange[1][];//存放约束 rng[0] = new IRange[4]; //AddLe为<=,AddGe为>=,AddEq为= rng[0][0] = cplexModel.AddLe( cplexModel.Sum(cplexModel.Prod(1.0, x[3]), cplexModel.Prod( 1.0, x[1])), 112.0, "c1"); rng[0][1] = cplexModel.AddLe( cplexModel.Sum(cplexModel.Prod(1.0, x[0]), cplexModel.Prod( 1.0, x[2])), 104.0, "c2"); rng[0][2] = cplexModel.AddEq( cplexModel.Sum(cplexModel.Prod(20.0, x[0]), cplexModel.Prod( 40.0, x[1])), 3200.0, "c3"); rng[0][3] = cplexModel.AddEq( cplexModel.Sum(cplexModel.Prod(10.0, x[2]), cplexModel.Prod( 30.0, x[3])), 2000.0, "c4");
方法2:使用列方法填充模型
IObjective obj =cplexModel.AddMinimize();//目标函数,此时是空的 //约束 IRange[][] rng=new IRange[1][]; rng[0]=new IRange[4]; rng[0][0] = cplexModel.AddRange(-double.MaxValue, 112.0, "c1");//<=112 rng[0][1] = cplexModel.AddRange(-double.MaxValue, 104.0, "c2"); rng[0][2] = cplexModel.AddRange(3200.0,3200.0, "c3");//=3200 rng[0][3] = cplexModel.AddRange(2000.0,2000.0, "c4"); //简化引用的书写 IRange r0 = rng[0][0]; IRange r1 = rng[0][1]; IRange r2 = rng[0][2]; IRange r3 = rng[0][3]; //决策变量 INumVar[][]deVar=new INumVar[1][]; deVar[0]=new INumVar[4];//4个决策变量 deVar[0][0] = cplexModel.NumVar(cplexModel.Column(obj, 50.0).And( cplexModel.Column(r1, 1.0).And( cplexModel.Column(r2, 20.0))), 0.0, double.MaxValue, "x11");//最后一行为取值和名称 deVar[0][1] = cplexModel.NumVar(cplexModel.Column(obj, 70.0).And( cplexModel.Column(r0, 1.0).And( cplexModel.Column(r2, 40.0))), 0.0, double.MaxValue, "x12"); deVar[0][2] = cplexModel.NumVar(cplexModel.Column(obj, 50.0).And( cplexModel.Column(r1, 1.0).And( cplexModel.Column(r3, 10.0))), 0.0, double.MaxValue, "x21"); deVar[0][3] = cplexModel.NumVar(cplexModel.Column(obj, 70.0).And( cplexModel.Column(r0, 1.0).And( cplexModel.Column(r3, 30.0))), 0.0, double.MaxValue, "x22");
求解模型并展示
if (cplexModel.Solve()) { int nvars = cplexModel.GetValues(deVar[0]).Length; for (int j = 0; j < nvars; ++j) { cplexModel.Output().WriteLine("Variable " + j +": Value = " + cplexModel.GetValues(deVar[0])[j] ); } }
导出模型
cplexModel.ExportModel("lpex1.lp");
文件在“你的项目\bin\debug”显示如下图:
完整代码和求解结果
using ILOG.Concert; using ILOG.CPLEX; using System; public class LPex1 { public static void Main(string[] args) { try { //实例化一个空模型 Cplex cplexModel = new Cplex(); //生成决策变量并赋值 INumVar[][] deVar = new INumVar[1][]; double[] lb = { 0.0, 0.0, 0.0, 0.0 }; double[] ub = { double.MaxValue, double.MaxValue, double.MaxValue, double.MaxValue }; string[] deVarName = { "x11", "x12", "x21", "x22" }; INumVar[] x = cplexModel.NumVarArray(4, lb, ub, deVarName); deVar[0] = x; //目标函数 double[] objCoef = { 50.0, 70.0, 50.0, 70.0 };//目标函数系数(object coefficient) cplexModel.AddMinimize(cplexModel.ScalProd(x, objCoef)); //约束条件 IRange[][] rng = new IRange[1][]; rng[0] = new IRange[4]; rng[0][0] = cplexModel.AddLe(cplexModel.Sum(cplexModel.Prod(1.0, x[3]), cplexModel.Prod(1.0, x[1])), 112, "c1"); rng[0][1] = cplexModel.AddLe(cplexModel.Sum(cplexModel.Prod(1.0, x[0]), cplexModel.Prod(1.0, x[2])), 104.0, "c2"); rng[0][2] = cplexModel.AddEq(cplexModel.Sum(cplexModel.Prod(20.0, x[0]), cplexModel.Prod(40.0, x[1])), 3200.0, "c3"); rng[0][3] = cplexModel.AddEq(cplexModel.Sum(cplexModel.Prod(10.0, x[2]), cplexModel.Prod(30.0, x[3])), 2000.0, "c4"); cplexModel.ExportModel("lpex1.lp"); if (cplexModel.Solve()) { int nvars = cplexModel.GetValues(deVar[0]).Length; for (int j = 0; j < nvars; ++j) { cplexModel.Output().WriteLine("Variable " + j +": Value = " + cplexModel.GetValues(deVar[0])[j] ); } } cplexModel.End(); } catch (ILOG.Concert.Exception e) { System.Console.WriteLine("Concert exception '" + e + "' caught"); } Console.ReadKey(); } }
决策变量较多时,请使用循环。本文重在入门和对cplex库中一些概念的理解。