【题解】 bzoj3450 JoyOI1952 Easy (期望dp)

题面戳我

Solution

  • 期望的题目真心不太会
  • 定义状态\(f[i]\)表示到第\(i\)期望长度,\(dp[i]\)表示期望分数
  • 如果上一步的持续\(o\)长度为\(L\),那么贡献是\(L^2\),现在长度为\(L+1\),贡献是\(L^2+2*L+1\),那么添加量就是\(2*L+1\)
  • 所以我们可以得到转移方程:

\(ch[i]==o\) 时,\(f[i]=f[i-1]+1 ~~~~~~~~~~~ dp[i]=dp[i-1]+f[i-1]*2+1\)
\(ch[i]==x\) 时,\(f[i]=0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dp[i]=dp[i-1]\)
\(ch[i]==?\) 时,\(f[i]=(f[i-1]+1)/2 ~~~~~dp[i]=dp[i-1]+(f[i-1]*2+1)/2\)

Code

//it is coded by ning_mew on 7.22
#include<bits/stdc++.h>
using namespace std;

const int maxn=3e5+7;

double ans=0,dp[maxn],f[maxn];
int n;
char ch[maxn];

int main(){
	scanf("%d",&n);  scanf("%s",ch);
	for(int i=1;i<=n;i++){
		if(ch[i-1]=='x'){f[i]=0;dp[i]=dp[i-1];continue;}
		if(ch[i-1]=='o'){f[i]=f[i-1]+1;dp[i]=dp[i-1]+f[i-1]*2+1;continue;}
		if(ch[i-1]=='?'){f[i]=0.5*f[i-1]+0.5;dp[i]=dp[i-1]+(f[i-1]*2+1)/2;continue;}
	}printf("%0.4f\n",dp[n]);return 0;	
}

博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会场场比赛暴0!!!

posted @ 2018-07-23 21:12  Ning_Mew  阅读(116)  评论(0编辑  收藏  举报