【题解】 [HNOI2015]落忆枫音 (拓扑排序+dp+容斥原理)
Solution:
(部分复制Navi_Aswon博客)
解释博客中的两个小地方:
\[\sum_{\left(S是G中y→x的一条路径的点集\right))}\prod_{2≤j≤n,(j∉S)}degree_j
\]
- 因为加了\(x\)到\(y\)这条边出现了环,所以环上一定有一条边是从\(x\)连向\(y\),所以在没有这条边时,能从\(y\)连向\(x\)的方案都是不满足的。
- 因此,上面这个式子就是找出了一条从\(y\)至\(x\)的路径后,连边的方案数。可以看作,\(y\)到\(x\)路径上的所有边都固定只连向环中的下一个点,所以方案数就是其他不在环上的点的入度乘积
\[f_i=\frac{∑\left(j→i\right)*f_j}{degree_i}
\]
-
这个式子用\(degree\)总乘积除掉环路径上的点后的乘积之和,也就是不同环到这个点来后的方案和,所以最后\(f[x]\)就是所有存在环的方案数。注意的理解的点就是,\(f[ ]\)不是一个固定的环存在的不能满足方案数,而是所有环的情况方案数之和
-
另外还用到了费马小定律求逆元,\(1e9+7\)是质数
是一道需要好好理解好好思考的题目
Code:
//It is coded by Ning_Mew on 3.17
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int maxn=1e5+7;
const int MOD=1e9+7;
int n,m,x,y;
int head[maxn],cnt=0;
struct Edge{
int nxt,to;
}edge[2*maxn];
int degree[maxn],in[maxn];
LL ans=0,f[maxn];
void add(int from,int to){
edge[++cnt].nxt=head[from];
edge[cnt].to=to;
head[from]=cnt;
}
LL q_pow(int x,int k){
LL box=1ll*x,ans=1;
while(k){
if(k%2)ans=ans*box%MOD;
box=box*box%MOD;
k=k/2;
}return ans;
}
void topsort(){
queue<int>q;
while(!q.empty())q.pop();
for(int i=1;i<=n;i++){if(in[i]==0)q.push(i);}
while(!q.empty()){
int u=q.front();q.pop();
f[u]=f[u]*q_pow(degree[u],MOD-2)%MOD;
for(int i=head[u];i!=0;i=edge[i].nxt){
int v=edge[i].to;
in[v]--;f[v]=(f[v]+f[u])%MOD;
if(in[v]==0)q.push(v);
}
}return;
}
int main(){
scanf("%d%d%d%d",&n,&m,&x,&y);
degree[y]++;
for(int i=1;i<=m;i++){
int a,b;scanf("%d%d",&a,&b);
add(a,b);degree[b]++;
}
ans=1;
for(int i=2;i<=n;i++){
in[i]=degree[i];
ans=1ll*ans*degree[i]%MOD;
}
in[1]=degree[1];
in[y]--; f[y]=ans;
if(y!=1)topsort();
printf("%lld\n",(ans-f[x]+MOD)%MOD);
return 0;
}