摘要:
第四章Linear Models for Classification仍由西北大学planktonli老师主讲,介绍了贝叶斯的marginalization概念、Fisher线性判别、感知机、分类器概率生成和判别模型的区别与联系、逻辑回归的最大似然参数估计、贝叶斯逻辑回归的Laplace近似推断等内容。 阅读全文
摘要:
理解机器学习莫过于从最基础的线性模型开始,第三章 Linear Models for Regression由西北大学planktonli老师主讲,介绍了线性基函数模型、正则化方法、贝叶斯线性回归及其与核函数的联系等内容,为后面几章打下了良好基础。 阅读全文
摘要:
第二章Probability Distributions的贝塔-二项式、狄利克雷-多项式共轭、高斯分布、指数族等很基础也很重要。 阅读全文
摘要:
第一章Introduction由西安交通大学常象宇博士主讲,深入浅出的介绍了机器学习的基本概念、学习理论、模型选择、维灾等。 阅读全文
摘要:
PRML读书会 Pattern Recognition And Machine Learning读书会 阅读全文