[线段树 + 数论 + 树状数组]求区间最大公约数 Interval GCD
区间最大公约数
原题链接:区间最大公约数
题目大意
和线段树的操作差不多,给你一个l, r让你都加d, 或者询问你l, r的最大公约数
题目题解
没学过初等数论吃大亏,写了一早上,以后abs一定要加std::
根据更相减损之术我们知道,\(gcd(x, y) = gcd(x, y - x)\) 那么可以拓展出三个数的情况 \(gcd(x,y,z) = gcd(x, y-x, z-y)\) 这是成立的
因为我们可以构造一个长度为\(n\)的新数列b,这个b是a的差分序列。用线段树维护序列b的区间最大公约数,(和上面的结论一样)
这样一来,我们的查询就解决了 直接gcd(a[l], ask(1, l + 1, r)) (想想 为什么?再看看上面的推导公式)
修改的话,很明显在b上是单点修改,在a上也要维护,可以用树状数组维护a值
代码如下
//#define fre yes
#include <cmath>
#include <cstdio>
#include <iostream>
#define int long long
const int N = 500005;
struct Node {
int l, r;
long long ans;
} tree[N << 2];
int a[N], b[N], c[N];
long long cnt;
long long gcd(long long x, long long y) {
return y ? gcd(y, x % y) : x;
}
namespace SegmentTree {
inline void build(int rt, int l, int r) {
tree[rt].l = l, tree[rt].r = r;
if(l == r) {
tree[rt].ans = b[l];
return ;
}
int mid = (l + r) >> 1;
build(rt * 2, l, mid);
build(rt * 2 + 1, mid + 1, r);
tree[rt].ans = gcd(tree[rt * 2].ans, tree[rt * 2 + 1].ans);
}
inline void change_point(int rt, int x, int k) {
if(tree[rt].l == tree[rt].r) {
tree[rt].ans += k;
return ;
}
int mid = (tree[rt].l + tree[rt].r) >> 1;
if(mid >= x) change_point(rt * 2, x, k);
else change_point(rt * 2 + 1, x, k);
tree[rt].ans = gcd(tree[rt * 2].ans, tree[rt * 2 + 1].ans);
}
inline void ask(int rt, int l, int r) {
if(tree[rt].l >= l && tree[rt].r <= r) {
cnt = gcd(cnt, tree[rt].ans);
return ;
}
int mid = (tree[rt].l + tree[rt].r) >> 1;
if(l <= mid) ask(rt * 2, l, r);
if(r > mid) ask(rt * 2 + 1, l, r);
}
}
int n;
namespace BIT {
int lowbit(int x) {
return x & (-x);
}
inline void add(int x, int k) {
while(x <= n) {
c[x] += k;
x += lowbit(x);
}
}
int ask(int x) {
long long res = 0;
while(x) {
res += c[x];
x -= lowbit(x);
} return res;
}
}
signed main() {
static int m;
scanf("%lld %lld", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
b[i] = a[i] - a[i - 1];
} SegmentTree::build(1, 1, n);
char c[3];
for (int i = 1; i <= m; i++) {
scanf("%s", c + 1);
if(c[1] == 'C') {
int l, r, d;
scanf("%lld %lld %lld", &l, &r, &d);
SegmentTree::change_point(1, l, d);
BIT::add(l, d);
if(r + 1 <= n) {
SegmentTree::change_point(1, r + 1, -d);
BIT::add(r + 1, -d);
}
} else {
cnt = 0; int l, r;
scanf("%lld %lld", &l, &r);
SegmentTree::ask(1, l + 1, r);
printf("%lld\n", gcd(a[l] + BIT::ask(l), std::abs(cnt)));
}
} return 0;
}