https://leetcode.com/problems/minimum-size-subarray-sum/
Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.
For example, given the array [2,3,1,2,4,3]
and s = 7
,
the subarray [4,3]
has the minimal length under the problem constraint.
解题思路:
比较典型的滑动窗口(双指针)题目。
如果sum<s,右侧指针右移,左侧不动。
如果sum>=s,立刻计算当前窗口宽度,并且左侧指针右移,缩小窗口面积,直到sum<s。并且这期间不断计算sum和宽度。
public class Solution { public int minSubArrayLen(int s, int[] nums) { int res = 0; int start = 0, sum = 0; for(int i = 0; i < nums.length; i++) { sum += nums[i]; if(sum >= s) { // res = Math.min(res, i - start + 1); while(sum >= s && start <= i) { if(res == 0) { res = i - start + 1; } else { res = Math.min(res, i - start + 1); } sum = sum - nums[start]; start++; } } } return res; } }
上面算法的时间复杂度为O(n)。为什么两层循环时间复杂度还是O(n),而不是O(n^2)?因为内层while的执行次数总计最多才n次,所以n+n=2n,而不是n*n。