[luogu2486] [SDOI2011]染色

传送门

emmmm裸的树剖,但是考点好像是在线段树上……

如何维护一个区间里有多少个连续相同的数字块呢?考虑对于\(a\)\(b\)两个区间,如果他们相接的端点颜色相同,那么合并出的新区间的\(seg = seg[a] + seg[b] - 1\),否则就是\(seg = seg[a] + seg[b]\)

这就是pushup操作了,但是懒标记怎么下推?直接把区间\(seg = 1\)即可,因为这一个区间颜色都一样了,但是两个端点的颜色要注意修改。

那问题到了剖分:一条路径由多条树链组成,树链首尾相连,也要考虑相接端点。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 100005
#define lson (rt<<1)
#define rson (rt<<1|1)
#define mid ((l+r)>>1)

struct edge {
    int v,next;
}G[MAXN<<1];
int head[MAXN];

struct Node {
    int u,from;
};
int val[MAXN],a[MAXN];
int seg[MAXN<<2],tag[MAXN<<2];

int dfn[MAXN],top[MAXN];
int size[MAXN],son[MAXN],fa[MAXN],d[MAXN];
int N,M,tot = 0,num = 0;

inline void add(int u,int v) {
    G[++tot].v = v;G[tot].next = head[u];head[u] = tot;
}

inline void pushup(int rt,int l,int r) {
    seg[rt] = seg[lson] + seg[rson];
    if(val[mid]==val[mid+1]) seg[rt]--;
}

void Build(int rt,int l,int r) {
    tag[rt] = 0;
    if(l==r) {
        seg[rt] = 1;
        return;
    }
    Build(lson,l,mid);
    Build(rson,mid+1,r);
    pushup(rt,l,r);
}

inline void pushdown(int rt,int l1,int r1,int l2,int r2) {
    if(tag[rt]==0) return;
    tag[lson] = tag[rson] = tag[rt];
    seg[lson] = seg[rson] = 1;
    val[l1] = val[r1] = val[l2] = val[r2] = tag[rt];
    tag[rt] = 0;
}

void update(int C,int L,int R,int rt,int l,int r) {
    if(L<=l&&R>=r) {
        seg[rt] = 1;
        tag[rt] = C;
        val[l] = val[r] = C;
        return;
    }
    if(L>r||R<l) return;
    pushdown(rt,l,mid,mid+1,r);
    if(L<=mid) update(C,L,R,lson,l,mid);
    if(R>mid) update(C,L,R,rson,mid+1,r);
    pushup(rt,l,r);
}

int query(int L,int R,int rt,int l,int r) {
    if(L<=l&&R>=r) return seg[rt];
    if(L>r||R<l) return 0;
    pushdown(rt,l,mid,mid+1,r);

    int left = 0,right = 0;
    if(L<=mid) left = query(L,R,lson,l,mid);
    if(R>mid) right = query(L,R,rson,mid+1,r);
    pushup(rt,l,r); 

    int r1 = mid,l2 = mid+1;
    if(left==0) return right;
    else if(right==0) return left;
    else if(val[r1]==val[l2]) return left+right-1;
    else return left+right;   
}

void dfs1(int u,int father) {
    d[u] = d[father] + 1;size[u] = 1;
    fa[u] = father;son[u] = 0;
    for(int i=head[u];i;i=G[i].next) {
        int v = G[i].v;if(v==father) continue;
        dfs1(v,u);
        size[u] += size[v];
        if(size[son[u]]<size[v]) son[u] = v;
    }
}

void dfs2(int u,int tp) {
    dfn[u] = ++num;
    top[u] = tp;
    val[num] = a[u];
    if(son[u]) dfs2(son[u],tp);
    for(int i=head[u];i;i=G[i].next) {
        int v = G[i].v;
        if(v==fa[u]||v==son[u]) continue;
        dfs2(v,v);
    }
}

inline int get_opt() {
    char ch = getchar();
    while(ch!='Q'&&ch!='C') ch = getchar();
    return ch == 'Q' ? 1 : 2;
}

inline int chain_query(int x,int y) {
    
    Node u = (Node){x,0};
    Node v = (Node){y,0};
    int ans = 0;
    while(top[u.u]!=top[v.u]) {
        if(d[top[u.u]]<d[top[v.u]]) std::swap(u,v);
        ans += query(dfn[top[u.u]],dfn[u.u],1,1,N);
        if(u.from!=0&&val[u.from]==val[dfn[u.u]]) ans--;
        u.from = dfn[top[u.u]];
        u.u = fa[top[u.u]];
    }
    if(d[u.u]>d[v.u]) std::swap(u,v);
    ans += query(dfn[u.u],dfn[v.u],1,1,N);
    if(u.from!=0&&val[u.from]==val[dfn[u.u]]) ans--;
    if(v.from!=0&&val[v.from]==val[dfn[v.u]]) ans--;
    return ans; 
}

inline void chain_update(int x,int y,int w) {
    while(top[x]!=top[y]) {
        if(d[top[x]]<d[top[y]]) std::swap(x,y);
        update(w,dfn[top[x]],dfn[x],1,1,N);
        x = fa[top[x]];
    }
    if(d[x]>d[y]) std::swap(x,y);
    update(w,dfn[x],dfn[y],1,1,N);
}

int main() {
    
    int u,v;
    scanf("%d%d",&N,&M);
    for(int i=1;i<=N;++i) {
        scanf("%d",&a[i]);
    }
  
    for(int i=1;i<N;++i) {
        scanf("%d%d",&u,&v);
        add(u,v);add(v,u);;
    }

    d[1] = 0;size[0] = 0;
    dfs1(1,1);dfs2(1,1);
    Build(1,1,N);

    int opt,w;
    for(int i=1;i<=M;++i) {
        opt = get_opt();
        if(opt==1) {
            scanf("%d%d",&u,&v);
            printf("%d\n",chain_query(u,v));
        }
        else {
            scanf("%d%d%d",&u,&v,&w);
            chain_update(u,v,w);
        }
    }
    return 0;
}
posted @ 2018-11-23 19:24  Neworld1111  阅读(163)  评论(0编辑  收藏  举报