hdu 5358 First One
题目链接:hdu 5358
思路不难理解,就是个尺取法而已,floor(log2X) + 1 就是求 X 的二进制表示的位数,对于题目来说这个值最多只是 30+,从这里入手开始枚举,运用尺取法可以达到 O(n) 的复杂度,具体百度之,按照这个思路写的代码 wa 了无数遍,一下午又这样没了,唉,好无语啊~~让我吃尽苦头的一道题,先记录下来,有空再慢慢琢磨。已AC代码:
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 using namespace std; 5 typedef long long ll; 6 const int N = 100005; 7 8 int n, a[N]; 9 ll sum[N]; 10 ll p2[40] = {1, }; 11 inline void init(int n = 35) { 12 for(int i = 1; i <= n; ++i) 13 p2[i] = p2[i - 1] * 2; 14 } 15 16 inline ll func(ll L, ll r1, ll r2) { 17 return (L + r1 + L + r2) * (r2 - r1 + 1) / 2; 18 } 19 20 ll cal(int k) { 21 ll res = 0; 22 ll low = (k == 1 ? 0: p2[k - 1]), up = p2[k] - 1; 23 int r1 = 1, r2 = 0; 24 for(int L = 1; L <= n; ++L) { 25 r1 = max(r1, L); 26 while(r1 <= n && (sum[r1] - sum[L - 1]) < low) ++r1; 27 if(r1 > n || sum[r1] - sum[L - 1] > up) continue; 28 29 r2 = max(r2, r1 - 1); 30 while(r2 + 1 <= n && sum[r2 + 1] - sum[L - 1] >= low 31 && sum[r2 + 1] - sum[L - 1] <= up) ++r2; 32 33 if(r1 > r2) continue; 34 res += func(L, r1, r2); 35 } 36 return res * k; 37 } 38 39 int main() { 40 int t; 41 init(); 42 scanf("%d",&t); 43 while(t--) { 44 scanf("%d",&n); 45 for(int i = 1; i <= n; ++i) { 46 scanf("%d", a + i); 47 sum[i] = sum[i - 1] + a[i]; 48 } 49 ll ans = 0; 50 for(int i = 1; i <= 35; ++i) 51 ans += cal(i); 52 printf("%I64d\n",ans); 53 } 54 return 0; 55 }