POJ 3260 多重背包+完全背包

  前几天刚回到家却发现家里没网线 && 路由器都被带走了,无奈之下只好铤而走险尝试蹭隔壁家的WiFi,不试不知道,一试吓一跳,用个手机软件简简单单就连上了,然后在浏览器输入192.168.1.1就能看到他的路由器的一切信息,包括密码,然后打开笔记本……好了,废话不多说,能连上网后第一时间当然是继续和队友之前约好的训练了。

  今天翻看到之前落下的一道混合背包题目,然后在草稿本上慢慢地写递推方程,把一些细节细心地写好…(本来不用太费时间的,可是在家嘛,一会儿妈走来要我教她玩手机,一会儿有一个亲戚朋友来……简直无语了,程序猿最讨厌被人打断的!虽说我不是码农)然后,这道题,细心分析后,发现它是多重背包+完全背包的。

  首先,可以先顺着推出 John手中的coin能拼凑出的币值的最小币数,即设dp[i][j]为前 i 种coin凑出币值 j 时需要的最小币数,很明显,dp[i][j]= min(dp[i-1][j], dp[i][j-coin[i]]+1) 的递推方程很容易想到,但是,这个方程在使用前需要满足很多情况,具体的细节就看代码了(全部都进行了空间优化,其中need数组表示前 i 种coin凑出币值 j 需要的最小币数时,需要的coin[i]的数量),因为之前看过《挑战》中多重背包的实现,所以这个稍微变化一下也不是很难了。

  然后,到了收银员找币时的情况,因为题目中说了她会提供无限的零钱,所以此时就是完全背包了,注意好计算顺序即可:

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 using namespace std;
 5 typedef long long LL;
 6 const int maxn= 10000;
 7 
 8 int dp[maxn+3], coin[103],num[103], need[maxn+3];
 9 
10 int main(){
11     int n,t,i,j;
12     while(~scanf("%d%d",&n,&t)){
13         for(i=1; i<=n; ++i)
14             scanf("%d",coin+i);
15         for(i=1; i<=n; ++i)
16             scanf("%d",num+i);
17         memset(dp,-1,sizeof(dp));
18         dp[0]= 0;
19         for(i=1; i<=n; ++i){
20             memset(need,0,sizeof(need));
21             for(j=0; j<=maxn; ++j)
22                 if(j>=coin[i]&& dp[j-coin[i]]!= -1 && need[j-coin[i]]<num[i]){
23                     if(dp[j]== -1 || dp[j]> dp[j-coin[i]]+1){
24                         dp[j]= dp[j-coin[i]]+1;
25                         need[j]= need[j-coin[i]]+1;
26                     }
27                 }
28         }
29         for(i=1; i<=n; ++i)
30             for(j=maxn-coin[i]; j>=0; --j)
31                 if(dp[j+coin[i]]!= -1){
32                     if(dp[j]== -1)    dp[j]= dp[j+coin[i]]+1;
33                     else    dp[j]= min(dp[j],dp[j+coin[i]]+1);
34                 }
35         printf("%d\n",dp[t]);
36     }
37     return 0;
38 }
View Code

  因为一开始没用到need数组所以调试了一会儿,然后今早起来想了想发现昨晚写的need数组有问题,不知是数据弱还是怎么的也能过,改了下后提交发现:

  竟然排到了16名,第一次这么前。

  后来又想了想,dp数组如果用INF而不是-1来作为凑不出币值 j 的标记的话,代码会更简单一些:

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 using namespace std;
 5 typedef long long LL;
 6 const int INF= 0x3fffffff;
 7 const int maxn= 10000;
 8 
 9 int dp[maxn+3], coin[103],num[103], need[maxn+3];
10 
11 int main(){
12     int n,t,i,j;
13     while(~scanf("%d%d",&n,&t)){
14         for(i=1; i<=n; ++i)
15             scanf("%d",coin+i);
16         for(i=1; i<=n; ++i)
17             scanf("%d",num+i);
18         for(j=1; j<=maxn; ++j)
19             dp[j]= INF;
20         dp[0]= 0;
21         for(i=1; i<=n; ++i){
22             memset(need,0,sizeof(need));
23             for(j=0; j<=maxn; ++j)
24                 if(j>=coin[i] && need[j-coin[i]]<num[i]){
25                     if(dp[j]> dp[j-coin[i]]+1){
26                         dp[j]= dp[j-coin[i]]+1;
27                         need[j]= need[j-coin[i]]+1;
28                     }
29                 }
30         }
31         for(i=1; i<=n; ++i)
32             for(j=maxn-coin[i]; j>=0; --j)
33                 dp[j]= min(dp[j],dp[j+coin[i]]+1);
34         printf("%d\n",dp[t]==INF? -1:dp[t]);
35     }
36     return 0;
37 }
View Code

  虽然比起上一个慢了点可以忽略不计的时间:

  anyway,人生第一道AC掉的混合背包,值得纪念,背包问题,继续进取中~~

posted @ 2015-02-03 00:13  Newdawn_ALM  阅读(253)  评论(0编辑  收藏  举报