【Machine Learning】监督学习、非监督学习及强化学习对比

  • Supervised Learning
  • Unsupervised Learning
  • Reinforced Learning

Goal:

  • How to apply these methods
  • How to evaluate each methods

What is Machine Learning?

1.computational statistics
2.computational artifacts(人工制品) that learn over time based on experience

一、分类

  • Supervised Learning
  • Unsupervised Learning
  • Reinforcement Learning

1.1 Supervised learning——Approximation

  • 一句话实质:About Function Approximation(函数逼近),or Approximate function induction(近似函数归纳)
  • feed with labeled examples,comeing up with some function that generalizes beyond(泛化函数)
  • 有反馈

1.2 Unsupervised learning——Description

  • 一句话实质:About Compact(简洁的) Description
  • 无监督学习是密切相关的统计数据密度估计的问题。
  • 无反馈
  • Unsupervised learning could be helpful in the supervised Setting

1.3 Reinforcement learning (增强学习)

  • 一句话实质:Learning from delayed reward (通过延迟性奖励进行学习)
  • 执行许多步之后才知道反馈,就像下棋(对比监督学习的立即反馈)

二、归纳法(induction)与演绎法(deduction)

  • Generalize 泛化
  • 了解机器学习发展史
  • 机器学习算法与归纳而不是演绎有关
  • Inductive bias 归纳偏差

归纳:从示例到一般规律(从一个示例得出更普遍的规律)

演绎:从规则到实例,a general rule to specific instances,basically like reasoning(推理)

三、三种机器学习的比较

表述成:优化问题

Supervised Learning —— labels data well(to find a funtion to score that) (标记数据)
Unsupervised Learning —— cluster scores well(最好的分类方法)
Reinforcement learning —— behavior scores well (最好的表现)

3.2 Data

Data is king in machine learning.

转变:以算法为中心——》以数据为中心

  • Believe in your data!
posted @ 2018-01-08 14:33  Neo007  阅读(1823)  评论(0编辑  收藏  举报