【最短路+最大流】上学路线@安徽OI2006
【最短路+最大流】上学路线@安徽OI2006
PROBLEM
SOLUTION
先在原图上跑单源最短路,找出包含所有最短路径的子图。
要使从S到T的最短路变长,那么在子图中S到T不再连通,要求代价最小,即在子图上找最小割。
因为“最小割等于最大流“,所以在子图上跑一遍最大流。
自己犯蠢,最短路子图建的双向边,wa了好几发
CODE
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 505;
const int MAXE = 124755*2;
const ll INF = 1247550005;
int n,m;
struct data {
int u,v,t,c;
} da[MAXE*2];
struct Graph1 {
struct edge {
int v,t,nex;
} ed[MAXE];
int head[MAXN],tot;
void addedge(int u,int v,int t) {
tot++;
ed[tot].v = v;
ed[tot].t = t;
ed[tot].nex = head[u];
head[u] = tot;
}
ll d[MAXN];int p[MAXN];
bool vis[MAXN];
priority_queue<pair<ll,int> >q;
void dijkstra(int st) {
fill(d,d+n+1,INF);
memset(vis,0,sizeof vis);
d[st] = 0;
q.push({0,st});
while(q.size()) {
int x = q.top().second;
q.pop();
if(vis[x])
continue;
vis[x] = 1;
for(int i = head[x]; i; i=ed[i].nex) {
int y = ed[i].v,z = ed[i].t;
if(d[y]>d[x]+z) {
d[y] = d[x] + z;
q.push({-d[y],y});
p[y] = i;
}
}
}
}
bool flag[MAXE];
queue<int> q2;
void bfs() {
memset(flag,0,sizeof flag);
memset(vis,0,sizeof vis);
q2.push(n);
while(q2.size()) {
int x = q2.front();
q2.pop();
if(vis[x])
continue;
vis[x] = 1;
int pre = p[x];
for(int i = head[x]; i; i=ed[i].nex) {
int y = ed[i].v,z = ed[i].t;
if((i^1) == pre||d[y] + z == d[ed[pre^1].v] + ed[pre^1].t) {
flag[i^1] = 1;
q2.push(y);
}
}
}
}
} G1;
struct Graph2 {
int head[MAXN],ver[MAXE<<1],Next[MAXE<<1],d[MAXN];
int s,t,tot;
ll maxflow,edge[MAXE<<1];
queue<int> q;
void add(int x,int y,int z) {
ver[++tot] = y,edge[tot] = z,Next[tot] = head[x],head[x] = tot;
ver[++tot] = x,edge[tot] = 0,Next[tot] = head[y],head[y] = tot;
}
bool bfs() {
memset(d,0,sizeof d);
while(q.size())
q.pop();
q.push(s);
d[s] = 1;
while(q.size()) {
int x = q.front();
q.pop();
for(int i = head[x]; i; i=Next[i])
if(edge[i]&&!d[ver[i]]) {
q.push(ver[i]);
d[ver[i]] = d[x] + 1;
if(ver[i]==t)
return 1;
}
}
return 0;
}
ll dinic(int x,ll flow) {
if(x==t)
return flow;
ll rest = flow,k;
for(int i = head[x]; i && rest; i=Next[i])
if(edge[i]&&d[ver[i]] == d[x] + 1) {
k = dinic(ver[i],min(rest,(ll)edge[i]));
if(!k)
d[ver[i]] = 0;
edge[i] -= k;
edge[i^1] += k;
rest-=k;
}
return flow - rest;
}
} G2;
int main() {
scanf("%d%d",&n,&m);
G1.tot = 1;
for(int i=1; i<=m; i++) {
int u,v,t,c;
scanf("%d%d%d%d",&u,&v,&t,&c);
da[i*2] = {u,v,t,c};
da[i*2+1] = {v,u,t,c};
G1.addedge(u,v,t);
G1.addedge(v,u,t);
}
G1.dijkstra(1);
G1.bfs();
G2.s = 1;
G2.t = n;
G2.tot = 1;
for(int i=2; i<=G1.tot; i++) {
if(G1.flag[i]) {
int x = da[i].u,y = da[i].v,c = da[i].c;
G2.add(x,y,c);
}
}
ll flow = 0;
while(G2.bfs())
while(flow=G2.dinic(G2.s,INF))
G2.maxflow += flow;
cout<<G1.d[n]<<endl;
cout<<G2.maxflow<<endl;
return 0;
}