快速沃尔什变换

FWT (Fast Walsh-Hadamard Transform) 快速沃尔什变换

要求 \(C(x)=\sum_{i\otimes j=x}A(i)B(j)\)\(\otimes\) 是二进制下的一种变换,如 \(\cap,\cup,\oplus\) 或者一些自定义运算。

类似 \(FFT\),我们对 \(A(x),B(x)\) 做线性变换变为 \(A'(x),B'(x)\),然后对应值相乘,即 \(C'(x)=A'(x)B'(x)\),对 \(C'(x)\) 做逆变换后得到 \(C(x)\)

设在变换中,\(F'(x)=\sum_{i=0}^n g(x,i)F(i)\)

\[\begin{align} C'(x)&=A'(x)B'(x) \\ \sum_{i=0}^n g(x,i)C(i)&=\sum_{j=0}^n g(x,j)A(j)\sum_{k=0}^ng(x,k)B(k) \\ \sum_{i=0}^ng(x,i)\sum_{j\otimes k=i}A(j)B(k)&=\sum_{j=0}^n\sum_{k=0}^n g(x,j)g(x,k)A(j)B(k) \\ \sum_{j=0}^n\sum_{k=0}^n A(j)B(k)g(x,j\otimes k)&=\sum_{j=0}^n\sum_{k=0}^n A(j)B(k)g(x,j)g(x,k)\\ g(x,i\otimes j)&=g(x,i)g(x,j) \end{align} \]

第 4 步到第 5 步可以互推,取特定的 \(A(j)=B(k)=1\),剩下为 \(0\) 即证。

于是若 \(g(x,i)\) 满足:

\[g(x,i\otimes j)=g(x,i)g(x,j) \]

就可以作为 \(FWT\) 变换的一种方案,当然,由于我们在求值,\(g(x,i)\) 也需要是可以逆变换的。

这里主要考虑按位的二进制变换(诡异如 \(i\otimes j=\text{count}(i)\cdot \text{count}(j)\) 这种通常不太可做),那么其实只要使得 \(0\)\(1\) 处的关系满足上式,然后令最终的对应 \(g(x,i)\) 是每一位的 \(g'(x,i)\) 之乘积即可。同时由于要可逆,变换系数应是非平凡的,于是乎对于常见的 \(\otimes\) 运算就很好构造了:

  • \(\cup\)\(g(x,i)=[i\sub x]\)

  • \(\cap\)\(g(x,i)=[i\supset x]\)

  • \(\oplus\):稍微麻烦一些,不过注意到

    \[\begin{cases} g(x,0)=g(x,0)^2=g(x,1)^2\\ g(x,1)=g(x,0)g(x,1) \end{cases} \]

    而且 \(x\) 分别为 \(0,1\) 时两者的系数还要不一样,

    于是: \(g(x,i)=(-1)^{|x\cap i|}\)

    其它的一些对应方案不一定可以,如 \(((1,-1),(-1,1)),\;g(x,i)=(-1)^{|x\oplus i|}\),这就没法求逆。

 

现在我们已经会构造合适的线性变换 \(g(x,i)\) 了,考虑对 \(F(x)\) 求出 \(F'(x)\) 。这里可以借鉴 \(FFT\) 的思路,从低位到高位逐步变换,可以发现,实际上就是 \(g(x,i)\) 每次多乘上当前位的 \(g'(x,i)\) 的系数。

\(a_0,a_1\) 为当前位是 \(0\)\(1\) 的部分对应的两个序列,那么有:

\[F'(a)=\text{merge}(g'(0,0)F'(a_0)+g'(0,1)F'(a_1),\;g'(1,0)F'(a_0)+g'(1,1)F'(a_1)) \]

而逆变换则类似矩阵求逆:

\[a=\text{merge}\left(\frac{g'(1,1)a_0-g'(0,1)a_1}{g'(0,0)g'(1,1)-g'(0,1)g'(1,0)},\frac{g'(1,0)a_0-g'(0,0)a_1}{g'(1,0)g'(0,1)-g'(1,1)g'(0,0)}\right) \]

每一位的贡献是独立的,因此逆变换不用倒过来从高位到低位还原,和正变换从低到高也是可以的。

于是每次 \(O(n\log n)\) 求解即可。

 

三者的 code:

void OR(ll *a, int op){
    for(int i = 1; i < 1<<n; i <<= 1)
        for(int j = 0; j < 1<<n; j += i<<1)
            rep(k,0,i-1) (a[i+j+k] += a[j+k] * op) %= mod;
}
void AND(ll *a, int op){
    for(int i = 1; i < 1<<n; i <<= 1)
        for(int j = 0; j < 1<<n; j += i<<1)
            rep(k,0,i-1) (a[j+k] += a[i+j+k] * op) %= mod;
}
void XOR(ll *a, int op){
    for(int i = 1; i < 1<<n; i <<= 1)
        for(int j = 0; j < 1<<n; j += i<<1) rep(k,0,i-1){
            ll v1 = a[j+k], v2 = a[i+j+k];
            a[j+k] = (v1 + v2) % mod, a[i+j+k] = (v1 + mod - v2) % mod;
            if(op == -1) (a[j+k] *= inv2) %= mod, (a[i+j+k] *= inv2) %= mod;
        }
}

 

一个应用:

HDOJ 6966 I love sequences

给定序列 \(\{a_n\},\{b_n\}\),求 \(\displaystyle \sum_{p=1}^n\sum_{k=1}^{+\infty} d_{p,k}\cdot c_{p}^k\),其中 \(\displaystyle d_{p,k}=\sum_{k=i\oplus j}a_i\cdot b_j\;(1\leq i,j\leq \frac{n}{p})\)\(\oplus\) 为三进制下按位取 \(\gcd\)\(n\leq 2\times 10^5\)

还是按位考虑,\(i,j,\gcd(i,j)\) 是这么个关系:

对于 \(i=0,1,2\) 都满足 \(g(x,i)^2=g(x,i)\),那么取值只能是 \(0\)\(1\) 。可以发现满足条件的 \(g(x,*)\) 有三组:\((1,0,1),(1,1,1),(1,0,0)\),于是将这三组任意分配给三行即可:

\[g=\begin{pmatrix} 1&0&1\\ 1&1&1\\ 1&0&0 \end{pmatrix} \]

逆变换就是对矩阵 \(g\) 求逆:

\[g^{-1}=\begin{pmatrix} 0&0&1\\ -1&1&0\\ 1&0&-1 \end{pmatrix} \]

求一个 \(d_p\)\(O(len\log len)\) 的,\(\sum len = O(n\ln n)\),所以时间复杂度是 \(O(n\log^2 n)\)

HDOJ 关掉前写的代码,\(g\) 的顺序稍有不同。

#include<iostream>
#include<cstdio>
#include<cstring>
#define rep(i,a,b) for(int i = (a); i <= (b); i++)
#define per(i,b,a) for(int i = (b); i >= (a); i--)
#define N 660000
#define mod 1000000007
#define ll long long
using namespace std;

inline int read(){
    int s = 0, w = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9'){ if(ch == '-') w = -1; ch = getchar(); }
    while(ch >= '0' && ch <= '9') s = (s<<3)+(s<<1)+(ch^48), ch = getchar();
    return s*w;
}

ll A[N], B[N], C[N], D[N], tA[N], tB[N];
int n, m;

void Trans(ll &x, ll &y, ll &z){
    ll a = x, b = y, c = z;
    x = a, y = (a+b+c)%mod, z = (a+c)%mod;
}
void iTrans(ll &x, ll &y, ll &z){
    ll a = x, b = y, c = z;
    x = a, y = (b-c+mod)%mod, z = (c-a+mod)%mod;
}

void FWT(ll *a, int id){
    for(int i = 1; i < m; i *= 3)
        for(int j = 0; j < m; j += (i*3)) rep(k,0,i-1){
            if(id == 0) Trans(a[j+k], a[j+k+i], a[j+k+2*i]);
            else iTrans(a[j+k], a[j+k+i], a[j+k+2*i]);
        }
}

int main(){
    n = read();
    rep(i,1,n) tA[i] = A[i] = read();
    rep(i,1,n) tB[i] = B[i] = read();
    rep(i,1,n) C[i] = read();

    ll ans = 0;
    rep(p,1,n){
        int lim = n/p;
        rep(i,1,lim) A[i] = tA[i], B[i] = tB[i];
        m = 1;
        while(m <= lim) m *= 3;
        
        FWT(A, 0), FWT(B, 0);
        rep(i,0,m-1) D[i] = (A[i]*B[i])%mod;
        FWT(D, 1);

        ll pow = 1;
        rep(i,1,m) (pow *= C[p]) %= mod, (ans += pow*D[i]) %= mod;
        rep(i,0,m) A[i] = B[i] = D[i] = 0;
    }

    cout<<ans<<endl;
}

这是官方题解:

每个数列采用的 \(FWT\) 变换矩阵甚至可以不同,算是从一个更高的角度看待快速沃尔什变换了。

posted @ 2022-03-24 22:20  Neal_lee  阅读(555)  评论(0编辑  收藏  举报