UOJ 418 【集训队作业2018】三角形——思路+线段树合并

题目:http://uoj.ac/problem/418

看了题解才会……

很好的想法是把整个过程看成若干 “取一点 i ,值+=w[ i ],值-=\(\sum w[j]\)”(其中 j 是 i 的孩子)的操作组成的序列。

序列有一个限制是 “孩子的操作在父亲前面” 。把序列反一下,操作变成 “取一点 i , 值-=w[ i ],值+=\(\sum w[j]\)” ,每个点就只被其父亲的位置限制了,比较好做。

用 ( x, y ) 表示一个点的操作。 x 表示操作结束的增量, y 表示过程中最大值与初始值的差。之所以是“与初始值的差”,是为了今后合并两个操作;因为初始值不确定。

  每个点的初值就是 ( \(-w[i]+\sumw[j],\sumw[j]\) )。合并 ( a, b ) 、( c, d ) 之后会变成 ( a+c , max( b, a+d ) ) 。

可以贪心地确定每个点的操作处在序列的什么位置。方法就是尝试交换相邻位置。

发现:1.同时 x<0 ,先做 y 大的;

   2.同时 x>=0 ,先做 y-x 小的;

   3.x<0 先于 x>=0

用堆维护,每次找最优先的。如果要做这个点的时候,其父亲还没做,就把它和父亲合并在一起放入堆,表示做完父亲就做它。可以用并查集+链表维护一个整体内部的操作顺序。

注意 x , y 相同的要按 id 区分开;都是 x<0 而 y , id 相同的要按 x 的具体值区分开。否则删除堆无法正常工作。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
#define ls Ls[cr]
#define rs Rs[cr]
using namespace std;
int rdn()
{
  int ret=0;bool fx=1;char ch=getchar();
  while(ch>'9'||ch<'0'){if(ch=='-')fx=0;ch=getchar();}
  while(ch>='0'&&ch<='9')ret=ret*10+ch-'0',ch=getchar();
  return fx?ret:-ret;
}
ll Mx(ll a,ll b){return a>b?a:b;}
ll Mn(ll a,ll b){return a<b?a:b;}
const int N=2e5+5;
int n,yf[N],w[N],fa[N],p[N],dy[N],tot; bool vis[N];
int hd[N],mn[N],xnt,to[N<<1],nxt[N<<1],tp[N],tt; ll ans[N];
int pr[N],nt[N],st[N],en[N];
struct Node{
  ll x,y; int id;
  Node(ll x=0,ll y=0,int i=0):x(x),y(y),id(i) {}
  Node operator+ (const Node &b)const
  {return Node(x+b.x,Mx(y,x+b.y),id);}
  bool operator< (const Node &b)const
  {
    if(x<0&&b.x>=0)return false; if(x>=0&&b.x<0)return true;
    if(x<0&&b.x<0)
      {
    if(y!=b.y)return y>b.y;
    if(id!=b.id)return id<b.id;
    return x<b.x;
      }
    if(y-x!=b.y-b.x)return y-x<b.y-b.x;
    if(id!=b.id)return id<b.id;
    return x<b.x;
  }
  bool operator== (const Node &b)const
  { return x==b.x&&y==b.y&&id==b.id;}
}a[N],ya[N];
priority_queue<Node> q,dq;
namespace T{
  const int M=N*20;
  int tot,rt[N],Ls[M],Rs[M]; Node vl[M];
  int nwnd(int pr=0)
  {
    int cr=++tot; ls=Ls[pr]; rs=Rs[pr];
    vl[cr]=vl[pr]; return cr;
  }
  void build(int l,int r,int &cr,int ps)
  {
    cr=nwnd(); if(l==r){vl[cr]=ya[p[l]];return;}
    int mid=l+r>>1;
    if(ps<=mid)build(l,mid,ls,ps);
    else build(mid+1,r,rs,ps);
    vl[cr]=vl[ls]+vl[rs];
  }
  void mrg(int l,int r,int &cr,int pr)
  {
    if(!pr)return; if(!cr){cr=pr;return;}//use is ok
    if(l==r){vl[cr]=vl[cr]+vl[pr];return;}
    int mid=l+r>>1;
    mrg(l,mid,ls,Ls[pr]); mrg(mid+1,r,rs,Rs[pr]);
    vl[cr]=vl[ls]+vl[rs];
  }
  void dfs(int cr)
  {
    build(1,n,rt[cr],dy[cr]);
    for(int i=hd[cr],v;i;i=nxt[i])
      {
    dfs(v=to[i]);
    mrg(1,n,rt[cr],rt[v]);
      }
    ans[cr]=w[cr]+vl[rt[cr]].y;
  }
}
void add(int x,int y)
{to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;}
void frs()
{
  while(dq.size()&&dq.top()==q.top())
      q.pop(), dq.pop();
}
int fnd(int a){ return fa[a]==a?a:fa[a]=fnd(fa[a]);}
void mrg(int x,int y)
{
  if(fa[y]==x)exit(0);
  pr[st[y]]=en[x]; nt[en[x]]=st[y]; en[x]=en[y];
  dq.push(a[x]); a[x]=a[x]+a[y]; q.push(a[x]);
  fa[y]=x; mn[x]=Mn(mn[x],mn[y]);
}
void solve(int x)
{
  int cr=st[x];
  while(cr)
    {
      p[++tot]=cr;dy[cr]=tot;vis[cr]=1;cr=nt[cr];
    }
}
int main()
{
  int op=rdn(); n=rdn();
  for(int i=2;i<=n;i++)yf[i]=rdn(),add(yf[i],i);
  for(int i=1;i<=n;i++)w[i]=rdn();
  for(int i=n;i;i--)
    {
      a[i].x=a[i].y-w[i]; a[yf[i]].y+=w[i];
      a[i].id=i; fa[i]=i; mn[i]=i;
      q.push(a[i]); ya[i]=a[i]; st[i]=en[i]=i;
    }
  vis[0]=1;
  while(q.size())
    {
      frs(); if(!q.size())break;
      Node k=q.top(); q.pop(); int x=k.id;
      if(vis[yf[mn[x]]]){solve(x);continue;}
      mrg(fnd(yf[mn[x]]),x);
    }
  /*for(int i=1;i<=tot;i++)printf("%d ",p[i]);puts("");
    for(int i=1;i<=tot;i++)printf("%d ",dy[i]);puts("");*/
  T::dfs(1);
  for(int i=1;i<=n;i++)printf("%lld ",ans[i]);
  puts(""); return 0;
}

 

posted on 2019-06-09 08:29  Narh  阅读(419)  评论(0编辑  收藏  举报

导航