洛谷 4721 【模板】分治 FFT——分治FFT / 多项式求逆

题目:https://www.luogu.org/problemnew/show/P4721

分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.html

     https://blog.csdn.net/VictoryCzt/article/details/82939586

不知为何自己的总是很慢。

觉得是 n 和 m 表示次数的话,len<=n+m;n 和 m 表示项数的话,len<n+m;应该是这样?

这里是 mid-L+1 项和 R-L+1 项的两个多项式相乘,所以 len < (mid-L+1)+(R-L+1);

但这样很慢;发现那个 g[0] = 0 每次浪费了一个位置;所以把 g 的标号都减小1,位置 i 对应的位置标号自然也减小了1;微妙地快了一点。

发现用到的最高次项也只是 R-L-1 次;所以 len<= R-L-1 即可!快了一倍。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=1e5+5,M=N<<2,mod=998244353;
int len,r[M],f[M],g[M],a[M],b[M];
int rdn()
{
  int ret=0;bool fx=1;char ch=getchar();
  while(ch>'9'||ch<'0'){if(ch=='-')fx=0;ch=getchar();}
  while(ch>='0'&&ch<='9') ret=ret*10+ch-'0',ch=getchar();
  return fx?ret:-ret;
}
void upd(int &x){x>=mod?x-=mod:0;}
int pw(int x,int k)
{int ret=1;while(k){if(k&1)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=1;}return ret;}
void ntt(int *a,bool fx)
{
  for(int i=0;i<len;i++)
    if(i<r[i])swap(a[i],a[r[i]]);
  for(int R=2;R<=len;R<<=1)
    {
      int Wn=pw( 3,(mod-1)/R );
      if(fx)Wn=pw( Wn,mod-2 );
      for(int i=0,m=R>>1;i<len;i+=R)
    for(int j=0,w=1;j<m;j++,w=(ll)w*Wn%mod)
      {
        int x=a[i+j], y=(ll)w*a[i+m+j]%mod;
        a[i+j]=x+y;  upd(a[i+j]);
        a[i+m+j]=x+mod-y;  upd(a[i+m+j]);
      }
    }
  if(!fx)return; int inv=pw( len,mod-2 );
  for(int i=0;i<len;i++)a[i]=(ll)a[i]*inv%mod;
}
void solve(int L,int R)
{
  if(L==R)return;
  int mid=L+R>>1;
  solve(L,mid);
  int d=R-L-1,i,j;
  for(i=0,j=L;j<=mid;i++,j++)a[i]=f[j];// d+=i-1;
  for(i=0,j=R-L;i<j;i++)b[i]=g[i+1];//  d+=i-1;//+1
  for(len=1;len<=d;len<<=1);
  for(i=0;i<len;i++)r[i]=(r[i>>1]>>1)+((i&1)?len>>1:0);
  for(i=mid-L+1;i<len;i++)a[i]=0;  for(i=R-L+1;i<len;i++)b[i]=0;
  ntt(a,0); ntt(b,0);
  for(i=0;i<len;i++)a[i]=(ll)a[i]*b[i]%mod;
  ntt(a,1);
  for(i=mid+1,j=i-L-1;i<=R;i++,j++)f[i]+=a[j],upd(f[i]);////j=i-L -1
  solve(mid+1,R);
}
int main()
{
  int n;n=rdn();for(int i=1;i<n;i++)g[i]=rdn();
  f[0]=1;
  solve(0,n-1);
  for(int i=0;i<n;i++)printf("%d ",f[i]);puts("");
  return 0;
}
View Code

多项式做法可参见洛谷自带的题解。

F(x) - f[0] = F(x)*G(x)

F(x) = 1/ ( f[0]-G(x) )

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=1e5+5,M=N<<2,mod=998244353;
int a[M],b[M],A[M],len,r[M];
int rdn()
{
  int ret=0;bool fx=1;char ch=getchar();
  while(ch>'9'||ch<'0'){if(ch=='-')fx=0;ch=getchar();}
  while(ch>='0'&&ch<='9') ret=ret*10+ch-'0',ch=getchar();
  return fx?ret:-ret;
}
void upd(int &x){x>=mod?x-=mod:0;}
int pw(int x,int k)
{int ret=1;while(k){if(k&1)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=1;}return ret;}
void ntt(int *a,bool fx)
{
  for(int i=0;i<len;i++)
    if(i<r[i])swap(a[i],a[r[i]]);
  for(int R=2;R<=len;R<<=1)
    {
      int Wn=pw( 3,fx?(mod-1)-(mod-1)/R:(mod-1)/R );
      for(int i=0,m=R>>1;i<len;i+=R)
    for(int j=0,w=1;j<m;j++,w=(ll)w*Wn%mod)
      {
        int x=a[i+j], y=(ll)w*a[i+m+j]%mod;
        a[i+j]=x+y;   upd(a[i+j]);
        a[i+m+j]=x+mod-y;   upd(a[i+m+j]);
      }
    }
  if(!fx)return; int inv=pw(len,mod-2);
  for(int i=0;i<len;i++)a[i]=(ll)a[i]*inv%mod;
}
void inv(int n)
{
  if(n==1){b[0]=pw(a[0],mod-2);return;}
  inv(n+1>>1);
  for(len=1;len<n<<1;len<<=1);
  for(int i=0;i<len;i++)r[i]=(r[i>>1]>>1)+((i&1)?len>>1:0);
  for(int i=0;i<n;i++)A[i]=a[i];  for(int i=n;i<len;i++)A[i]=0;
  ntt(A,0);  ntt(b,0);
  for(int i=0;i<len;i++)b[i]=((b[i]<<1)-(ll)A[i]*b[i]%mod*b[i])%mod+mod,upd(b[i]);
  ntt(b,1);
  for(int i=n;i<len;i++)b[i]=0;
}
int main()
{
  int n; n=rdn(); for(int i=1;i<n;i++)a[i]=mod-rdn(); a[0]=1;
  inv(n);
  for(int i=0;i<n;i++)printf("%d ",b[i]);puts("");
  return 0;
}
View Code

posted on 2018-11-30 16:24  Narh  阅读(195)  评论(0编辑  收藏  举报

导航