BZOJ-2618 [CQOI2006]凸多边形
半平面交模版题。。
#include <cstdlib> #include <cstdio> #include <cmath> #include <cstring> #include <cctype> #include <algorithm> #define rep(i, l, r) for(int i=l; i<=r; i++) #define clr(x, c) memset(x, c, sizeof(x)) #define maxn 1000 //#define double long double #define linf 1e15 using namespace std; typedef long long ll; inline int read() { int x=0, f=1; char ch=getchar(); while (!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();} while (isdigit(ch)) x=x*10+ch-'0', ch=getchar(); return x*f; } struct P{double x, y;} p[maxn]; P operator - (P a, P b){return (P){a.x-b.x, a.y-b.y};} double operator * (P a, P b){return a.x*b.y-b.x*a.y;} struct line{P a, b; double ang;} l[maxn], a[maxn], q[maxn]; bool operator < (line a, line b){if (a.ang==b.ang) return (a.b-a.a)*(b.a-a.a)>0; return a.ang<b.ang;} inline P inter(line a, line b) { double k1=(b.b-a.a)*(a.b-a.a), k2=(a.b-a.a)*(b.a-a.a), t=k2/(k1+k2); return (P){b.a.x+t*(b.b.x-b.a.x), b.a.y+t*(b.b.y-b.a.y)}; } inline bool jud(line x, line y, line v){return (inter(x, y)-v.a)*(v.b-v.a)>0;} int n, m, cnt; int main() { n=read(); rep(i, 1, n) { int k=read(); rep(j, 1, k) p[j].x=read(), p[j].y=read(); p[k+1]=p[1]; rep(j, 1, k) l[++m].a=p[j], l[m].b=p[j+1]; } rep(i, 1, m) l[i].ang=atan2(l[i].b.y-l[i].a.y, l[i].b.x-l[i].a.x); sort(l+1, l+1+m); rep(i, 1, m) a[l[i].ang!=a[cnt].ang ? ++cnt : cnt]=l[i]; int L=1, R=0; q[++R]=a[1]; q[++R]=a[2]; rep(i, 3, cnt) { while (L<R && jud(q[R-1], q[R], a[i])) R--; while (L<R && jud(q[L+1], q[L], a[i])) L++; q[++R]=a[i]; } while (L<R && jud(q[R-1], q[R], q[L])) R--; while (L<R && jud(q[L+1], q[L], q[R])) L++; if (R-L<2) {puts("0.000"); return 0;} cnt=0; q[R+1]=q[L]; rep(i, L, R) p[++cnt]=inter(q[i], q[i+1]); double ans=0; rep(i, 1, cnt-1) ans+=p[i].x*p[i+1].y; ans+=p[cnt].x*p[1].y; rep(i, 2, cnt) ans-=p[i].x*p[i-1].y; ans-=p[1].x*p[cnt].y; if (ans<0) ans*=-1; printf("%.3lf", ans/2); return 0; }