BZOJ-2194 快速傅立叶之二
FFT模版题。
观察题目,我们可以发现,只要把序列b倒过来,再联想一下乘法运算。。。
我们会发现,将序列a和序列b当作100进制数,做一次乘法,然后从低到高每一位便是答案了(乘完无需进位)
#include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> #include <iostream> #include <cctype> #include <complex> #define rep(i, l, r) for(int i=l; i<=r; i++) #define down(i, l, r) for(int i=l; i>=r; i--) #define maxn 400009 #define cd complex <double> #define PI acos(0.0)*2.0 #define ll long long using namespace std; inline int read() { int x=0, f=1; char ch=getchar(); while (!isdigit(ch)) {if (ch=='-') f=-1; ch=getchar();} while (isdigit(ch)) x=x*10+ch-'0', ch=getchar(); return x*f; } cd a[maxn], b[maxn], c[maxn], A[maxn]; int n, m, n1[maxn], n2[maxn], s[maxn]; int ans[maxn]; void fft(cd *a, bool flag) { rep(i, 0, n-1) s[i]=0; for(int i=1, j=n; i<n; i*=2, j/=2) rep(h, j/2, j-1) s[h]+=i; for(int i=1; i<n; i*=2) rep(j, 0, i-1) s[j+i]+=s[j]; rep(i, 0, n-1) A[i]=a[s[i]]; double pi=flag?PI:-PI; for(int step=1; step<n; step*=2) { cd e=exp(cd(0, 2.0*pi/double(step*2))), w=cd(1, 0); for (int pos=0; pos<step; pos++, w*=e) for(int i=pos; i<n; i+=step*2) { cd ret=A[i], rec=w*A[i+step]; A[i]=ret+rec, A[i+step]=ret-rec; } } if (!flag) rep(i, 0, n-1) A[i]/=n; rep(i, 0, n-1) a[i]=A[i]; } int main() { m=read(); rep(i, 1, m) n1[m-i]=read(), n2[i-1]=read(); n=1; while (n<m*2) n*=2; rep(i, 0, n-1) a[i]=cd(n1[i], 0); fft(a, true); rep(i, 0, n-1) b[i]=cd(n2[i], 0); fft(b, true); rep(i, 0, n-1) c[i]=a[i]*b[i]; fft(c, false); rep(i, 0, m-1) ans[i]=c[i].real()+0.5; down(i, m-1, 0) printf("%d\n", ans[i]); }