HDU-3360 National Treasures
给定各个宝物的多个守卫点,求最少移走宝物个数。
假如某个宝物的守卫点位于另一个宝物的位置上,则两者只能选其一,于是连边,求二分图的最小顶点覆盖。(可证明图内无奇数环)
//#include <cmath> #include <cstdlib> #include <cstdio> #include <cstring> #include <algorithm> #include <fstream> #include <iostream> #define rep(i, l, r) for(int i=l; i<=r; i++) #define clr(x, c) memset(x, c, sizeof(x)) #define N 53 #define MAX 1<<30 #define ll long long using namespace std; int read() { int x=0, f=1; char ch=getchar(); while (ch<'0' || ch>'9') { if (ch=='-') f=-1; ch=getchar(); } while (ch>='0' && ch<='9') { x=x*10+ch-'0'; ch=getchar(); } return x*f; } const int dir[12][2] = {{-1,-2},{-2,-1},{-2,+1},{-1,+2},{+1,+2},{+2,+1},{+2,-1},{+1,-2},{-1,0},{0,+1},{+1,0},{0,-1}}; struct edge{int y1, y2, n;} e[N*N*N*N]; int fir[N][N], en; int n, m, k1[N][N], k2[N][N], t, ans, map[N][N]; bool b[N][N]; void Add(int x1, int x2, int y1, int y2) { en++, e[en].y1=y1, e[en].y2=y2, e[en].n=fir[x1][x2], fir[x1][x2]=en; en++, e[en].y1=x1, e[en].y2=x2, e[en].n=fir[y1][y2], fir[y1][y2]=en; } bool Can(int x, int y) { return x>0 && x<=n && y>0 && y<=m; } bool Find(int x1, int x2) { int o=fir[x1][x2], y1=e[o].y1, y2=e[o].y2; while (o) { if (!b[y1][y2]) { b[y1][y2]=1; if (!k1[y1][y2] || Find(k1[y1][y2], k2[y1][y2])) { k1[y1][y2]=x1; k2[y1][y2]=x2; return true; } } o=e[o].n, y1=e[o].y1, y2=e[o].y2; } return false; } int main() { while(scanf("%d %d", &n, &m) && (n || m)) { t++; clr(fir, 0); en=ans=0; rep(i, 1, n) rep(j, 1, m) map[i][j]=read(); rep(i, 1, n) rep(j, 1, m) { int a=map[i][j]; if (a<0) continue; rep(o, 0, 11) { if (a%2 && Can(i+dir[o][0], j+dir[o][1]) && map[i+dir[o][0]][j+dir[o][1]]>=0) Add(i, j, i+dir[o][0], j+dir[o][1]); a/=2; } } clr(k1, 0); clr(k2, 0); rep(i, 1, n) rep(j, 1, m) if ((i+j)%2) { clr(b, 0); if (Find(i, j)) ans++; } printf("%d. %d\n", t, ans); } return 0; }