BZOJ-3809 Gty的二逼妹子序列
无修改的查询题,分块莫队+树状数组搞之。可这样貌似会Tle……
于是不用树状数组,改成对权值进行分块,使查询的复杂度变成O(n^0.5),修改则是O(1)。(原树状数组的复杂度:查询O(lgn),修改O(lgn))
#include <cstdlib> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <fstream> #include <iostream> #include <queue> #define rep(i, l, r) for(int i = l; i <= r; i++) #define down(i, l, r) for(int i = l; i >= r; i--) #define N 100005 #define M 1000005 #define ll long long using namespace std; struct node{int l, r, id, a, b;} q[M]; int n, m, k[N], pos[N], ans[M], now, s[N], t[1005], bl[1005], br[1005]; inline int read() { int x=0, f=1; char ch=getchar(); while (ch<'0' || ch>'9') { if (ch=='-') f=-1; ch=getchar(); } while (ch>='0' && ch<='9') { x=x*10+ch-'0'; ch=getchar(); } return x*f; } bool cmp(node a, node b) { if (pos[a.l] == pos[b.l]) return a.r < b.r; else return a.l < b.l; } int Q(int x, int y) { int a = 0; rep(i, pos[x]+1, pos[y]-1) a+=t[i]; if (pos[x] == pos[y]) { rep(i, x, y) if (s[i]) a++; } else { rep(i, x, br[pos[x]]) if (s[i]) a++; rep(i, bl[pos[y]], y) if (s[i]) a++; } return a; } void del(int x) { s[x]--; if (s[x]==0) t[pos[x]]--; } void add(int x) { s[x]++; if (s[x]==1) t[pos[x]]++; } int main() { n=read(); m=read(); rep(i, 1, n) k[i]=read(); int block = int(sqrt(n)); rep(i, 1, n) pos[i] = (i-1)/block+1; rep(i, 1, pos[n]) bl[i] = block*(i-1)+1, br[i] = block*i; br[pos[n]] = n; rep(i, 1, m) q[i].l=read(), q[i].r=read(), q[i].a=read(), q[i].b=read(), q[i].id=i; sort(q+1, q+1+m, cmp); int l = 1, r = 0; rep(i, 1, m) { while (l < q[i].l) del(k[l++]); while (q[i].r < r) del(k[r--]); while (q[i].l < l) add(k[--l]); while (r < q[i].r) add(k[++r]); ans[q[i].id] = Q(q[i].a, q[i].b); } rep(i, 1, m) printf("%d\n", ans[i]); return 0; }