[Luogu 3768]简单的数学题

Description

输入一个整数n和一个整数p,你需要求出$(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p$,其中gcd(a,b)表示a与b的最大公约数。

Input

一行两个整数p、n。

Output

一行一个整数$(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p$。

Sample Input

998244353 2000

Sample Output

883968974

HINT

对于20%的数据,$n \leq 1000$。

对于30%的数据,$n \leq 5000$。

对于60%的数据,$n \leq 10^6$,时限1s。

对于另外20%的数据,$n \leq 10^9$,时限3s。

对于最后20%的数据,$n \leq 10^{10}$,时限6s。

对于100%的数据,$5 \times 10^8 \leq p \leq 1.1 \times 10^9$且p为质数。

题解

题目要求 $$\sum_{i=1}^n\sum_{j=1}^n ij\cdot gcd(i,j)$$

提出 $gcd$ \begin{aligned}&\sum_{d=1}^nd\sum_{i=1}^{n}\sum_{j=1}^nij[gcd(i,j)=d]\\=&\sum_{d=1}^nd^3\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{n}{d}\right\rfloor}ij[gcd(i,j)=1]\\=&\sum_{d=1}^nd^3\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{n}{d}\right\rfloor}ij\sum_{k\mid gcd(i,j)}\mu(k)\\=&\sum_{d=1}^nd^3\sum_{k=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\mu(k)k^2\sum_{i=1}^{\left\lfloor\frac{n}{kd}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{n}{kd}\right\rfloor}ij\end{aligned}

令 $F(x)=\sum\limits_{i=1}^xi=\frac{x(x+1)}{2}$ , $T=kd$ \begin{aligned}\Rightarrow&\sum_{d=1}^nd^3\sum_{k=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\mu(k)k^2F^2\left(\frac{n}{kd}\right)\\=&\sum_{T=1}^nF^2\left(\frac{n}{T}\right)\sum_{d\mid T}d^3\left(\frac{T}{d}\right)^2\mu\left(\frac{T}{d}\right)\\=&\sum_{T=1}^nF^2\left(\frac{n}{T}\right)T^2\sum_{d\mid T}d\cdot\mu\left(\frac{T}{d}\right)\end{aligned}

前面的很好处理,但那个狄利克雷卷积是什么鬼...我们把它拎出来调教一下: $$\sum_{d\mid T}d\cdot\mu\left(\frac{T}{d}\right)$$

这个形式似乎不好看,我们让它女装变个样子: $$\sum_{d\mid T}\frac{T}{d}\cdot\mu(d)=T\sum_{d\mid T}\frac{\mu(d)}{d}$$

这玩意不就是 $\varphi(T)$ 么。带入原柿 $$\sum_{T=1}^nF^2\left(\frac{n}{T}\right)T^2\varphi(T)$$

现在就好搞♂了,美滋滋。记 $f(T)=T^2\varphi(T)$ 显然他是个积性函数,可以杜教筛了。

考虑求 $S(n)=\sum\limits_{i=1}^nf(i)$

上述式子 $$g(1)S(n)=\sum_{i=1}^n(g*f)(i)-\sum_{i=2}^ng(i)S\left(\left\lfloor\frac{n}{i}\right\rfloor\right)$$

考虑到 $\sum\limits_{d\mid n}\varphi(d)=n$ ,又由于 $(g*f)(n)=\sum\limits_{d\mid n}\varphi(d)d^2\cdot g\left(\frac{n}{d}\right)$ 。我们考虑让 $g(n)=id^2(n)$ ,那么 $(id*f)(n)=\sum\limits_{d\mid n}n^2\cdot\varphi(d)=n^3$ 。由于 $\sum\limits_{i=1}^ni^3=\frac{n^2(n+1)^2}{4}=\left(\frac{n(n+1)}{2}\right)^2=F^2(n)$ 。显然这个卷积的前缀为 $\sum\limits_{i=1}^n(g*f)(i)=F^2(n)$ 。

故对于 $f$ $$S(n)=F^2(n)-\sum_{i=2}^ni^2\cdot S\left(\left\lfloor\frac{n}{i}\right\rfloor\right)$$

由公式 $\sum\limits_{i=1}^ni^2=\frac{n(n+1)(2n+1)}{6}$ 现在整个柿子都好算了。

 

 1 //It is made by Awson on 2018.1.25
 2 #include <set>
 3 #include <map>
 4 #include <cmath>
 5 #include <ctime>
 6 #include <queue>
 7 #include <stack>
 8 #include <cstdio>
 9 #include <string>
10 #include <vector>
11 #include <cstdlib>
12 #include <cstring>
13 #include <iostream>
14 #include <algorithm>
15 #define LL long long
16 #define Abs(a) ((a) < 0 ? (-(a)) : (a))
17 #define Max(a, b) ((a) > (b) ? (a) : (b))
18 #define Min(a, b) ((a) < (b) ? (a) : (b))
19 #define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
20 #define writeln(x) (write(x), putchar('\n'))
21 #define lowbit(x) ((x)&(-(x)))
22 using namespace std;
23 const int N = 2333333;
24 void read(LL &x) {
25     char ch; bool flag = 0;
26     for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
27     for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
28     x *= 1-2*flag;
29 }
30 void write(LL x) {
31     if (x > 9) write(x/10);
32     putchar(x%10+48);
33 }
34 
35 LL n, p, phi[N+5], inv2, inv6;
36 LL prime[N+5], isprime[N+5], tot;
37 map<LL,LL>mp;
38 
39 LL quick_pow(LL a, LL b) {
40     LL ans = 1; a %= p;
41     while (b) {
42     if (b&1) ans = ans*a%p;
43     a = a*a%p; b >>= 1;
44     }
45     return ans;
46 }
47 void get_pre() {
48     memset(isprime, 1, sizeof(isprime)); isprime[1] = 0, phi[1] = 1;
49     for (int i = 2; i <= N; i++) {
50     if (isprime[i]) prime[++tot] = i, phi[i] = 1ll*(i-1)*i%p*i%p;
51     for (int j = 1; j <= tot && i*prime[j] <= N; j++) {
52         isprime[i*prime[j]] = 0;
53         if (i%prime[j]) phi[i*prime[j]] = phi[i]*(prime[j]-1)%p*prime[j]%p*prime[j]%p;
54         else {phi[i*prime[j]] = phi[i]*prime[j]%p*prime[j]%p*prime[j]%p; break; }
55     }
56     (phi[i] += phi[i-1]) %= p;
57     }
58 }
59 LL sum(LL n) {n %= p; return n*(n+1)%p*inv2%p; }
60 LL sum2(LL n) {n %= p; return n*(n+1)%p*(n*2+1)%p*inv6%p; }
61 LL get_phi(LL n) {
62     if (n <= N) return phi[n];
63     if (mp.count(n)) return mp[n];
64     LL ans = sum(n)*sum(n)%p;
65     for (LL i = 2, last; i <= n; i = last+1) {
66     last = n/(n/i); (ans -= get_phi(n/i)*((sum2(last)-sum2(i-1))%p)%p) %= p;
67     }
68     return mp[n] = ans;
69 }
70 void work() {
71     read(p), read(n); get_pre(); inv2 = quick_pow(2, p-2), inv6 = quick_pow(6, p-2); LL ans = 0;
72     for (LL i = 1, last; i <= n; i = last+1) {
73     last = n/(n/i); LL s = sum(n/i);
74     (ans += s*s%p*((get_phi(last)-get_phi(i-1))%p)%p) %= p;
75     }
76     writeln((ans+p)%p);
77 }
78 int main() {
79     work();
80     return 0;
81 }

 

posted @ 2018-01-25 16:42  NaVi_Awson  阅读(243)  评论(0编辑  收藏  举报