[BZOJ 4916]神犇和蒟蒻

Description

很久很久以前,有一只神犇叫yzy;
很久很久之后,有一只蒟蒻叫lty;

Input

请你读入一个整数N;1<=N<=1E9,A、B模1E9+7;

Output

请你输出一个整数 $A=\sum_{i=1}^N{\mu (i^2)}$ ;
请你输出一个整数 $B=\sum_{i=1}^N{\varphi (i^2)}$ ;

Sample Input

1

Sample Output

1
1

题解

首先注意到 $A$ 直接输出 $1$ 得满分。因为只有 $\mu(1^2)=1$ 。至于为什么,想想莫比乌斯函数是什么。

对于第二问容易发现 $\varphi(i^2)=i\cdot\varphi(i)$ 。至于为什么,想想你是怎么线性筛欧拉函数的。

对于函数 $f(i)=i\cdot\varphi(i)$ 容易发现,这也是个积性函数。我们可以将阈值内的线性筛筛出来。对于阈值外的,考虑杜教筛。

求 $S(n)=\sum\limits_{i=1}^nf(i)$

上述式子 $$g(1)S(n)=\sum_{i=1}^n(g*f)(i)-\sum_{i=2}^ng(i)S\left(\left\lfloor\frac{n}{i}\right\rfloor\right)$$

考虑到 $\sum\limits_{d\mid n}\varphi(d)=n$ ,又由于 $(g*f)(n)=\sum\limits_{d\mid n}\varphi(d)d\cdot g\left(\frac{n}{d}\right)$ 。我们考虑让 $g(n)=id(n)$ ,那么 $(id*f)(n)=\sum\limits_{d\mid n}n\cdot\varphi(d)=n^2$ 。由于 $\sum\limits_{i=1}^ni^2=\frac{n(n+1)(2n+1)}{6}$ 。显然这个卷积的前缀为 $\sum\limits_{i=1}^n(g*f)(i)=\frac{n(n+1)(2n+1)}{6}$ 。

故对于 $f$ $$S(n)=\frac{n(n+1)(2n+1)}{6}-\sum_{i=2}^ni\cdot S\left(\left\lfloor\frac{n}{i}\right\rfloor\right)$$

 

 1 //It is made by Awson on 2018.1.24
 2 #include <set>
 3 #include <map>
 4 #include <cmath>
 5 #include <ctime>
 6 #include <queue>
 7 #include <stack>
 8 #include <cstdio>
 9 #include <string>
10 #include <vector>
11 #include <cstdlib>
12 #include <cstring>
13 #include <iostream>
14 #include <algorithm>
15 #define LL long long
16 #define Abs(a) ((a) < 0 ? (-(a)) : (a))
17 #define Max(a, b) ((a) > (b) ? (a) : (b))
18 #define Min(a, b) ((a) < (b) ? (a) : (b))
19 #define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
20 #define writeln(x) (write(x), putchar('\n'))
21 #define lowbit(x) ((x)&(-(x)))
22 using namespace std;
23 const int MOD = 1e9+7;
24 const int N = 2333333;
25 void read(int &x) {
26     char ch; bool flag = 0;
27     for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
28     for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
29     x *= 1-2*flag;
30 }
31 void write(int x) {
32     if (x > 9) write(x/10);
33     putchar(x%10+48);
34 }
35 
36 int n, inv2, inv6, f[N+5];
37 int prime[N+5], isprime[N+5], tot;
38 map<int, int>mp;
39 
40 int quick_pow(int a, int b) {
41     int ans = 1;
42     while (b) {
43     if (b&1) ans = 1ll*ans*a%MOD;
44     a = 1ll*a*a%MOD, b >>= 1;
45     }
46     return ans;
47 }
48 void get_f() {
49     memset(isprime, 1, sizeof(isprime)); isprime[1] = 0, f[1] = 1;
50     for (int i = 2; i <= N; i++) {
51     if (isprime[i]) prime[++tot] = i, f[i] = 1ll*i*(i-1)%MOD;
52     for (int j = 1; j <= tot && i*prime[j] <= N; j++) {
53         isprime[i*prime[j]] = 0;
54         if (i%prime[j]) f[i*prime[j]] = 1ll*f[i]*(prime[j]-1)%MOD*prime[j]%MOD;
55         else {f[i*prime[j]] = 1ll*f[i]*prime[j]%MOD*prime[j]%MOD; break; }
56     }
57     (f[i] += f[i-1]) %= MOD;
58     }
59 }
60 int cal(int x) {
61     if (x <= N) return f[x];
62     if (mp.count(x)) return mp[x];
63     int ans = 1ll*x*(x+1)%MOD*(2*x+1)%MOD*inv6%MOD;
64     for (int i = 2, last; i <= x; i = last+1) {
65     last = x/(x/i); (ans -= 1ll*(last+i)*(last-i+1)%MOD*inv2%MOD*cal(x/i)%MOD) %= MOD; 
66     }
67     return mp[x] = ans;
68 }
69 void work() {
70     get_f(); inv2 = quick_pow(2, MOD-2), inv6 = quick_pow(6, MOD-2); read(n);
71     writeln(1); writeln((cal(n)+MOD)%MOD);
72 }
73 int main() {
74     work();
75     return 0;
76 }

 

 

 

posted @ 2018-01-25 16:42  NaVi_Awson  阅读(254)  评论(0编辑  收藏  举报