[BZOJ 2818]Gcd
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
Sample Output
HINT
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
题解
由题,我们需要求
$$\sum_{i=1} ^N\sum_{j=1} ^N[gcd(i,j)为质数]$$
我们不妨令$p=gcd(i,j)$,即$p$为质数,
显然我们不可能去枚举每个$i$,$j$,我们考虑去枚举每个质数$p$,原式化为
$$\sum_p\sum_{i=1}^{\lfloor {N \over p} \rfloor}\sum_{j=1}^{\lfloor {N \over p} \rfloor}[gcd(i,j)=1]$$
我们取出数对$(i,j)$
1.若$i>j$,我们发现对于式子
$$\sum_p\sum_{i=1}^{\lfloor {N \over p} \rfloor}\sum_{j=1}^{\lfloor {N \over p} \rfloor}[gcd(i,j)=1]$$
可化为
$$\sum_p\sum_{i=1}^{\lfloor {N \over p} \rfloor}\sum_{j=1}^{i-1}[gcd(i,j)=1]$$
取出
$$\sum_{i=1}^{\lfloor {N \over p} \rfloor}\sum_{j=1}^{i-1}[gcd(i,j)=1]$$
发现,这其实就是欧拉函数$φ$的定义式(先不考虑$φ(1)=1$)。
那么原式就可以化为
$$\sum_p\sum_{i=1}^{\lfloor {N \over p} \rfloor}φ(i)$$
结论。
2.若$i=j$,这种条件下只有$i=j=p$符合条件,显然最后我们只要将答案加上素数的个数就可以了。
3.若$i<j$,实际上只要交换$i$,$j$位置即可,我们只需要将1.得出的结论$×2$即可。
1 #include<map> 2 #include<set> 3 #include<ctime> 4 #include<cmath> 5 #include<queue> 6 #include<stack> 7 #include<cstdio> 8 #include<string> 9 #include<vector> 10 #include<cstdlib> 11 #include<cstring> 12 #include<iostream> 13 #include<algorithm> 14 #define LL long long 15 #define RE register 16 #define IL inline 17 using namespace std; 18 const int N=1e7; 19 20 int n; 21 22 bool isprime[N+5]; 23 int prime[N+5],top; 24 int phi[N+5]; 25 IL void Pre(); 26 27 int main() 28 { 29 scanf("%d",&n); 30 Pre(); 31 LL ans=0; 32 for (RE int i=1;i<=top;i++) 33 { 34 int lim=n/prime[i]; 35 for (RE int j=1;j<=lim;j++) ans+=phi[j]; 36 } 37 ans=ans*2+top; 38 printf("%lld\n",ans); 39 return 0; 40 } 41 42 IL void Pre() 43 { 44 for (RE int i=2;i<=n;i++) 45 { 46 if (!isprime[i]) phi[i]=i-1,prime[++top]=i; 47 for (RE int j=1;j<=top&&i*prime[j]<=n;j++) 48 { 49 isprime[i*prime[j]]=1; 50 if (!(i%prime[j])) {phi[i*prime[j]]=phi[i]*prime[j];break;} 51 else phi[i*prime[j]]=phi[i]*phi[prime[j]]; 52 } 53 } 54 }
其实统计答案的第二层循环可以用前缀和优化。
1 //It is made by Awson on 2018.1.12 2 #include <set> 3 #include <map> 4 #include <cmath> 5 #include <ctime> 6 #include <queue> 7 #include <stack> 8 #include <cstdio> 9 #include <string> 10 #include <vector> 11 #include <cstdlib> 12 #include <cstring> 13 #include <iostream> 14 #include <algorithm> 15 #define LL long long 16 #define Max(a, b) ((a) > (b) ? (a) : (b)) 17 #define Min(a, b) ((a) < (b) ? (a) : (b)) 18 #define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b)) 19 using namespace std; 20 const int N = 1e7; 21 void read(int &x) { 22 char ch; bool flag = 0; 23 for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar()); 24 for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar()); 25 x *= 1-2*flag; 26 } 27 void write(LL x) { 28 if (x > 9) write(x/10); 29 putchar(x%10+48); 30 } 31 32 int n, isprime[N+5], prime[N+5], tot; 33 LL phi[N+5], ans; 34 35 void get_phi() { 36 memset(isprime, 1, sizeof(isprime)); isprime[1] = 0;//, phi[1] = 1; 37 for (int i = 2; i <= n; i++) { 38 if (isprime[i]) phi[i] = i-1, prime[++tot] = i; 39 for (int j = 1; j <= tot && i*prime[j] <= n; j++) { 40 isprime[i*prime[j]] = 0; 41 if (!(i%prime[j])) {phi[i*prime[j]] = phi[i]*prime[j]; break; } 42 else phi[i*prime[j]] = phi[prime[j]]*phi[i]; 43 } 44 } 45 } 46 void work() { 47 read(n); get_phi(); 48 for (int i = 1; i <= n; i++) phi[i] += phi[i-1]; 49 for (int i = 1; i <= tot; i++) ans += phi[n/prime[i]]; 50 write(ans*2+tot); 51 } 52 int main() { 53 work(); 54 return 0; 55 }