[CEOI 2004]锯木厂选址
Description
从山顶上到山底下沿着一条直线种植了 $n$ 棵老树。当地的政府决定把他们砍下来。为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂。
木材只能朝山下运。山脚下有一个锯木厂。另外两个锯木厂将新修建在山路上。你必须决定在哪里修建这两个锯木厂,使得运输的费用总和最小。假定运输每公斤木材每米需要一分钱。询问计算最小运输费用。
$1\leq n\leq 20000$
Solution
记从山顶向下重量做一个前缀和为 $w_i$,第 $i$ 棵树到山底的距离为 $d_i$,所有树到底端的距离乘重量的和为 $sum$。
枚举两个锯木厂位置 $i,j(j<i)$。显然答案就是 $\max{sum-w_j\times d_j-(w_i-w_j)\times d_i}$。
由于 $w$ 和 $d$ 的单调性相反,于是这个式子是可以斜率优化的,把 $j$ 优化掉就可以 $O(n)$ 求解了。
Code
#include <bits/stdc++.h>
using namespace std;
const int N = 20000+5;
int n, w[N], d[N], f[N], q[N], head, tail, tmp, ans;
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d%d", &w[i], &d[i]);
for (int i = n; i >= 1; i--) d[i] += d[i+1], tmp += w[i]*d[i];
for (int i = 1; i <= n; i++) w[i] += w[i-1];
q[head = tail = 1] = 1;
for (int i = 2; i <= n; i++) {
while (head < tail && 1ll*w[q[head+1]]*d[q[head+1]]-w[q[head]]*d[q[head]]
>= 1ll*d[i]*(w[q[head+1]]-w[q[head]])) ++head;
ans = max(ans, w[q[head]]*d[q[head]]-d[i]*w[q[head]]+w[i]*d[i]);
while (head < tail && 1ll*(w[i]*d[i]-w[q[tail-1]]*d[q[tail-1]])*(w[i]-w[q[tail]])
<= 1ll*(w[i]*d[i]-w[q[tail]]*d[q[tail]])*(w[i]-w[q[tail-1]])) --tail;
q[++tail] = i;
}
printf("%d\n", tmp-ans);
return 0;
}
博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/NaVi-Awson/,否则你会终生找不到妹子!!!