Task5.PyTorch实现L1,L2正则化以及Dropout

1.了解知道Dropout原理  

  深度学习网路中,参数多,可能出现过拟合及费时问题。为了解决这一问题,通过实验,在2012年,Hinton在其论文《Improving neural networks by preventing co-adaptation of feature detectors》中提出Dropout。证明了其能有效解决过拟合的能力。

dropout 是指在深度学习网络的训练过程中,按照一定的概率将一部分神经网络单元暂时从网络中丢弃,相当于从原始的网络中找到一个更瘦的网络示意图如下:

  其实现是以某种概率分布使得一些神经元为0,一些为1.这样在有N个神经元的神经网络中,其参数搭配可能有2^N种。
具体介绍 见论文(我也不是很懂 实现得见)
适用情况:
1 Dropout主要用在数据量不够,容易过拟合,需要dropout。

 

L1及L2可以使得结构化风险最小
其中:
L1的参数具有稀疏性(具有更多的0或1)
L2的参数趋近于分散化 ,其参数值趋向于选择更简单(趋于0的参数),因此比较平滑


2.用代码实现正则化(L1、L2、Dropout)

 

L1范数

 

  L1范数是参数矩阵W中元素的绝对值之和,L1范数相对于L0范数不同点在于,L0范数求解是NP问题,而L1范数是L0范数的最优凸近似,求解较为容易。L1常被称为LASSO.

1 regularization_loss = 0
2 for param in model.parameters():
3     regularization_loss += torch.sum(abs(param))
4 
5 for epoch in range(EPOCHS):
6     y_pred = model(x_train)
7     classify_loss = criterion(y_pred, y_train.float().view(-1, 1))
8     loss = classify_loss + 0.001 * regularization_loss  # 引入L1正则化项

L2范数

  L2范数是参数矩阵W中元素的平方之和,这使得参数矩阵中的元素更稀疏,与前两个范数不同的是,它不会让参数变为0,而是使得参数大部分都接近于0。L1追求稀疏化,从而丢弃了一部分特征(参数为0),而L2范数只是使参数尽可能为0,保留了特征。L2被称为Rigde.

 

1 criterion  = torch.nn.BCELoss() #定义损失函数
2 optimizer = torch.optim.SGD(model.parameters(),lr = 0.01, momentum=0, dampening=0,weight_decay=0) #weight_decay 表示使用L2正则化

3.Dropout的numpy实现

 1 import numpy as np
 2 
 3 X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
 4 
 5 y = np.array([[0,1,1,0]]).T
 6 
 7 alpha,hidden_dim,dropout_percent,do_dropout = (0.5,4,0.2,True)
 8 
 9 synapse_0 = 2*np.random.random((3,hidden_dim)) - 1
10 
11 synapse_1 = 2*np.random.random((hidden_dim,1)) - 1
12 
13 for j in xrange(60000):
14 
15     layer_1 = (1/(1+np.exp(-(np.dot(X,synapse_0)))))
16 
17     if(do_dropout):
18 
19         layer_1 *= np.random.binomial([np.ones((len(X),hidden_dim))],1-dropout_percent)[0] * (1.0/(1-dropout_percent))
20 
21     layer_2 = 1/(1+np.exp(-(np.dot(layer_1,synapse_1))))
22 
23     layer_2_delta = (layer_2 - y)*(layer_2*(1-layer_2))
24 
25     layer_1_delta = layer_2_delta.dot(synapse_1.T) * (layer_1 * (1-layer_1))
26 
27     synapse_1 -= (alpha * layer_1.T.dot(layer_2_delta))
28 
29     synapse_0 -= (alpha * X.T.dot(layer_1_delta))

4.完整代码

 

 1 import torch
 2 from torch import nn
 3 from torch.autograd import Variable
 4 import torch.nn.functional as F
 5 import torch.nn.init as init
 6 import math
 7 from sklearn import datasets
 8 from sklearn.model_selection import train_test_split
 9 from sklearn.metrics import classification_report
10 import numpy as np
11 import pandas as pd
12 %matplotlib inline
13 
14 # 导入数据
15 data = pd.read_csv(r'C:\Users\betty\Desktop\pytorch学习\data.txt')
16 x, y = data.ix[:,:8],data.ix[:,-1]
17 
18 #测试集为30%,训练集为80%
19 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
20 
21 x_train = Variable(torch.from_numpy(np.array(x_train)).float())
22 y_train = Variable(torch.from_numpy(np.array(y_train).reshape(-1, 1)).float())    
23 
24 x_test = Variable(torch.from_numpy(np.array(x_test)).float())
25 y_test= Variable(torch.from_numpy(np.array(y_test).reshape(-1,1)).float())    
26 
27 
28 print(x_train.data.shape)
29 print(y_train.data.shape)
30 
31 print(x_test.data.shape)
32 print(y_test.data.shape)
33 
34 class Model(torch.nn.Module):
35     def __init__(self):
36         super(Model, self).__init__()
37         self.l1 = torch.nn.Linear(8, 200)
38         self.l2 = torch.nn.Linear(200, 50)
39         self.l3 = torch.nn.Linear(50, 1)
40 
41     def forward(self, x):
42         out1 = F.relu(self.l1(x))
43         out2 = F.dropout(out1, p= 0.5)
44         out3 = F.relu(self.l2(out2))
45         out4 = F.dropout(out3, p=0.5)
46         y_pred = F.sigmoid(self.l3(out3))
47         return y_pred
48 
49 model = Model()
50 
51 criterion = torch.nn.BCELoss()
52 optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=0.1)
53 
54 Loss=[]
55 for epoch in range(2000):
56         y_pred = model(x_train)
57         loss = criterion(y_pred, y_train)
58         if epoch % 400 == 0:
59             print("epoch =", epoch, "loss", loss.item())
60             Loss.append(loss.item())
61         optimizer.zero_grad()
62         loss.backward()
63         optimizer.step()
64 
65 # 模型评估
66 def label_flag(data):
67     for i in range(len(data)):
68         if(data[i]>0.5):
69             data[i] = 1.0
70         else:
71             data[i] = 0.0
72     return data
73 
74 y_pred = label_flag(y_pred)  
75 print(classification_report(y_train.detach().numpy(), y_pred.detach().numpy()))
76 
77 # 测试
78 y_test_pred = model(x_test)
79 y_test_pred = label_flag(y_test_pred)       
80 print(classification_report(y_test.detach().numpy(), y_test_pred.detach().numpy()))

 

数据集下载链接:链接:https://pan.baidu.com/s/1LrJktjVQ1OM9mYt_cuE-FQ
提取码:hatv

 

 

原文链接:https://blog.csdn.net/wehung/article/details/89283583

posted @ 2019-08-15 21:49  Assange  阅读(2703)  评论(0编辑  收藏  举报