[考试总结]noip模拟8

又是一个题的正解都没有打出来的一天

但是自己独创了 \(lca\) 的求法, 然而如果去掉求 \(lca\) 的过程,就不会 \(TLE\)\(\huge{\text{囧}}\)

然后就是对性质不是十分熟悉。。。

\(T1\) 的欧拉路我是真的忘干净了,别说什么性质了,提起来只还记得一个一笔画。。。

然后还有就是单调性的误判,然而拿了很多分,但是写了一个错解。。。

超级树上花费了不少时间,然后什么都没有打出来。。。

骗了5分 \(\huge{\text{囧}}\)

对于最后一个题目,自己估计的复杂度为 \(\mathcal O(nm)\)

然而因为数据过水

过了一批。。。。

然而我的独创 \(lca\) 求法还是 \(TLE\)

所以对于这批数据,不求 \(lca\) 才是最快的解法。。。。

T1

这道题目其实就是考察欧拉路,欧拉路的很多很多性质记住之后就能秒掉这个题目。。。

题目的要求其实就是 把每条边加倍,然后将这个图变成欧拉路就行了

然后就是不太难的排列组合问题

考虑几个情况。

  1. 去掉两个自环。
  2. 去掉一个自环和一条边。
  3. 去掉两个相连的边。

然后就是判断这个图是否是 边联通图。。。

这个图和点联通图不是很一样,即使点不全部联通这个图也可能是边联通图

所以可以考虑从一个度不为 \(0\) 的点开始拓扑,然后如果发现有的点没有到过并且存在度或者是存在自环,那么就可以输出 \(0\) 走人了。

对于排列:

\[C_{num_{huan}}^{2}+num_{huan}*num_{bian}+\sum_{i=1}^{n}C_{bian}^{2} \]


T2

其实式子很简单,就是数列分块的思想。。

\[d\leq \frac{k+\sum_{1}^{n}a_i}{\sum_{1} ^{n} \frac{a_i}{d}} \]

然后就可以在线性再乘上根号的复杂度去搞了。


T3

我是真想不出来。。。

就是用 \(f_{i,j}\)\(i\) 是深度 ,\(j\) 是枚举的 \(l\) \(r\) 边的个数。。。。

方程五个就不放了。。。


T4

先预处理出来所要的值。

然后对于没一个询问向上爬取。

先使两个点深度相同。

然后再一起向上爬取。。。

就这。。。

然而这并不是正解。。。

正解还是要 \(lca\) 的,然后向上处理前缀和。

差分也行。。。

复杂度稳定。。。


posted @ 2021-06-18 15:21  NP2Z  阅读(30)  评论(0编辑  收藏  举报