Python 07 深浅拷贝

Python之深浅拷贝

 

拷贝就是拷贝,何来深浅之说?

Python中,对象的赋值,拷贝(深/浅拷贝)之间是有差异的,如果使用的时候不注意,就可能产生意外的结果

其实这个是由于共享内存导致的结果

拷贝:原则上就是把数据分离出来,复制其数据,并以后修改互不影响。

先看 一个非拷贝的例子

=赋值:数据完全共享=赋值是在内存中指向同一个对象,如果是可变(mutable)类型,比如列表,修改其中一个,另一个必定改变

如果是不可变类型(immutable),比如字符串,修改了其中一个,另一个并不会变

1
2
3
4
5
6
l1 = [123, ['aa''bb']]
l2 = l1
l2[0]='aaa'
l2[3][0]='bbb'
print(l1)  #['aaa', 2, 3, ['bbb', 'bb']]
print(id(l1)==id(l2))  #True

 l2 = l1 ,l1 完全赋值给l2 ,l2的内存地址与l1 相同,即内存完全指向

 

浅拷贝:数据半共享(复制其数据独立内存存放,但是只拷贝成功第一层)

 

复制代码
l1 = [1,2,3,[11,22,33]]
l2 = l1.copy()
print(l2) #[1,2,3,[11,22,33]]
l2[3][2]='aaa'
print(l1) #[1, 2, 3, [11, 22, 'aaa']]
print(l2) #[1, 2, 3, [11, 22, 'aaa']]
l1[0]= 0
print(l1) #[0, 2, 3, [11, 22, 'aaa']]
print(l2) #[1, 2, 3, [11, 22, 'aaa']]
print(id(l1)==id(l2)) #Flase
复制代码

如上述代码,l2浅拷贝了l1 ,之后l2把其列表中的列表的元素给修改,从结果看出,l1也被修改了。但是仅仅修改l1列表中的第一层元素,却并没有影响l2。

比较一下l2与l1的内存地址:False,说明,l2在内存中已经独立出一部分复制了l1的数据,但是只是浅拷贝,第二层的数据并没有拷贝成功,而是指向了l1中的第二层数据的内存地址,所以共享内存‘相当于‘’等号赋值’‘,所以就会有l2中第二层数据发生变化,l1中第二层数据也发生变化

 

深拷贝:数据完全不共享(复制其数据完完全全放独立的一个内存,完全拷贝,数据不共享)

 深拷贝就是完完全全复制了一份,且数据不会互相影响,因为内存不共享。

深拷贝的方法有

导入模块

1
2
3
4
5
6
7
import copy
l1 = [123, [112233]]
# l2 = copy.copy(l1)  浅拷贝
l2 = copy.deepcopy(l1)
print(l1,'>>>',l2)
l2[3][0= 1111
print(l1,">>>",l2)

 由此可见深拷贝就是数据完完全全独立拷贝出来一份。不会由原先数据变动而变动

posted @ 2018-10-25 20:56  恩佐MIG-U1  阅读(100)  评论(0编辑  收藏  举报