计算方法 | 曲线拟合的最小二乘法

就是找个破多项式,让每个点和真实数据的差值的平方最小,原理就是这么简单。

1.写正则方程组(法方程组)

2.写结果向量

3.解方程组

丢代码:

 1 import numpy as np
 2 import math
 3 # data = eval(input("请输入数据:"))
 4 data = [(0.6,7.05),(1.3,12.2),(1.64,14.4),(1.8,15.2),(2.1,17.4),(2.3,19.6),(2.44,20.2)]
 5 n = 2
 6 m = len(data)
 7 fa_mat = [[0 for j in range(n)] for i in range(n)]
 8 for i in range(len(fa_mat)):
 9     for j in range(len(fa_mat[0])):
10         _sum = 0
11         for k in range(m):
12             _sum += data[k][0] ** (i+j)
13         fa_mat[i][j] = _sum
14 print("法方程组如下:")
15 print(np.array(fa_mat))
16 # 计算结果向量
17 b = [[0] for i in range(n)]
18 for i in range(n):
19     _sum = 0
20     for k in range(m):
21         _sum += ((data[k][0] ** i) * data[k][1])
22         # print("_sum += (({} ** {}) * {})".format(data[k][0],i,data[k][1]))
23     b[i][0] = _sum
24 print("结果向量如下:")
25 print(np.array(b))
26 print("下面是解方程组:\n\n")
27 # 解线性方程组 使用三角分解法 ======================================
28 mat = fa_mat[:]
29 b = b[:]
30 height = len(mat)
31 width = len(mat[0])
32 
33 # 1 直接分解矩阵
34 # 初始化LU
35 U = [[0 for i in range(width)] for j in range(height)]
36 L = [[0 if i!=j else 1 for i in range(width) ] for j in range(height)]
37 
38 print(L,U)
39 
40 # 从U第一行开始,对于L来说是从第一列开始
41 for i in range(height):
42     # 依次计算LU的行、列
43     for j in range(i, width):
44         _sum = 0
45         for k in range(i):
46             _sum += L[i][k] * U[k][j]
47             print("U{}{}_sum += L[{}][{}] * U[{}][{}] = {} * {} = {}".format(i,j,i,k,k,j,L[i][k],U[k][j],L[i][k] * U[k][j]))
48         U[i][j] = mat[i][j] - _sum
49     # L的i.j是反着的
50     for j in range(i, width):
51         _sum = 0
52         if j > i:
53             for k in range(i):
54                 _sum += L[j][k] * U[k][i]
55                 print("L{}{}_sum += L[{}][{}] * U[{}][{}] = {} * {} = {}".format(j,i,j,k,k,i,L[j][k],U[k][i],L[j][k] * U[k][i]))
56             L[j][i] = (mat[j][i] - _sum) / U[i][i]
57     print("L = \n{}".format(np.array(L)))
58     print("U = \n{}".format(np.array(U)))
59     
60 print("分解完毕,开始计算Ly=b")
61 # 分解完毕 解Ly =b
62 y = [[0] for i in range(height)]
63 # print(y)
64 for i in range(height):
65     _sum = 0
66     for k in range(i):
67         _sum += L[i][k] * y[k][0]
68     y[i][0] = (b[i][0] - _sum)          # 这里不用除以系数因为对角线为1
69     print(y)
70 print("计算完毕,开始计算Ux=y")
71 x = [[0] for i in range(height)]
72 for i in range(height-1,-1,-1):
73     _sum = 0
74     for k in range(height-1,i,-1):
75         _sum += U[i][k] * x[k][0]
76     x[i][0] = (y[i][0] - _sum) / U[i][i]
77     print(x)
78 print("最终结果x: \n{}".format(np.array(x)))

over.

posted @ 2020-10-26 20:41  Mz1  阅读(237)  评论(0编辑  收藏  举报