BZOJ4408 [Fjoi 2016]神秘数 【主席树】

题目链接

BZOJ4408

题解

假如我们已经求出一个集合所能凑出连续数的最大区间\([1,max]\),那么此时答案为\(max + 1\)
那么我们此时加入一个数\(x\),假若\(x > max + 1\),显然对答案没有影响
但是假若\(x \le max + 1\),显然最大区间变为\([1,max + x]\),答案变为\(max + x + 1\)

那么我们就能得出这题的解法了
将区间内的数排序,一开始\(ans = 0\),然后逐一将数加入集合之中, 一但出现\(x > max + 1\)的情况,由于是有序的,后面的数也无法更新答案,此时答案就是最优的
但是暴力排序枚举显然不行,我们可以用主席树优化
每求出一个新的区间\([1,max]\)后,\([1,max + 1]\)内的数都可以参与贡献,那么此时新的区间为\([1,\sum a_i]\),其中\(a_i \le max + 1\)
\(max\)不变时算法结束
显然\(max\)是成倍增长的,所以复杂度为\(O(nlog^2(\sum a_i))\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 7000005,INF = 1000000000;
inline int read(){
	int out = 0,flag = 1; char c = getchar();
	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
	return out * flag;
}
int ls[maxm],rs[maxm],sum[maxm],rt[maxn],cnt;
int n,m,a[maxn],M;
void modify(int& u,int pre,int l,int r,int pos){
	u = ++cnt;
	sum[u] = sum[pre] + pos; ls[u] = ls[pre]; rs[u] = rs[pre];
	if (l == r) return;
	int mid = l + r >> 1;
	if (mid >= pos) modify(ls[u],ls[pre],l,mid,pos);
	else modify(rs[u],rs[pre],mid + 1,r,pos);
}
int query(int u,int v,int l,int r,int L,int R){
	if (l >= L && r <= R) return sum[u] - sum[v];
	int mid = l + r >> 1;
	if (mid >= R) return query(ls[u],ls[v],l,mid,L,R);
	if (mid < L) return query(rs[u],rs[v],mid + 1,r,L,R);
	return query(ls[u],ls[v],l,mid,L,R) + query(rs[u],rs[v],mid + 1,r,L,R);
}
int main(){
	n = read();
	REP(i,n) a[i] = read(),M = max(M,a[i]);
	m = read();
	for (int i = 1; i <= n; i++)
		modify(rt[i],rt[i - 1],1,M,a[i]);
	int l,r,ans,s;
	while (m--){
		l = read(); r = read(); ans = 0;
		while (true){
			s = query(rt[r],rt[l - 1],1,M,1,ans + 1);
			if (s <= ans) break;
			ans = s;
		}
		printf("%d\n",ans + 1);
	}
	return 0;
}

posted @ 2018-06-15 10:17  Mychael  阅读(186)  评论(0编辑  收藏  举报