BZOJ2659 [Beijing wc2012]算不出的算式 【数形结合】

题目链接

BZOJ2659

题解

真没想到,,

观察式子

\[\sum\limits_{k = 1}^{\frac{p - 1}{2}} \lfloor \frac{kq}{p} \rfloor \]

有没有想到斜率?
如果构造函数

\[y = \frac{q}{p}x \]

那么该式子的含义就是直线在\(x \in [1,\frac{p - 1}{2}]\)下方的整点数
容易发现另一条直线是其反函数,所以它们的点可以补成一个矩形

而且题目保证\(p,q\)为质数,除非\(p,q\)相等,否则直线上是不会有整点的

所以

\[ans = \frac{(p - 1)(q - 1)}{4} \]

\(p = q\)时,\(ans\)要加上\(\frac{p - 1}{2}\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline LL read(){
	LL out = 0,flag = 1; char c = getchar();
	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
	return out * flag;
}
LL p,q;
int main(){
	p = read(); q = read();
	LL ans = p / 2 * (q / 2);
	if (p == q) ans += p / 2;
	printf("%lld\n",ans);
	return 0;
}

posted @ 2018-05-31 11:43  Mychael  阅读(305)  评论(0编辑  收藏  举报