BZOJ2001 [Hnoi2010]City 城市建设 【CDQ分治 + kruskal】

题目链接

BZOJ2001

题解

CDQ分治神题。。。
难想难写。。

比较朴素的思想是对于每个询问都求一遍\(BST\),这样做显然会爆
考虑一下时间都浪费在了什么地方
我们每次求\(BST\)实际上就只有一条边不同,我们实际浪费了很多时间在处理相同的边上

那就考虑分治
对于一个待修改的边集,我们将其权值全部设为\(-\infty\),跑一遍\(BST\),此时其它边如果被选中,说明这些边在单独询问时也一定会被选,将这些边连的点缩点
同样,对于一个待修改的边集,我们将其权值全部设为\(\infty\),跑一遍\(BST\),此时其它边没被选中,说明这些边在单独询问时也一定不会被选,将这些边删掉

这样就可以\(A\)
复杂度我也不知道是什么

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 50005,maxm = 50005,INF = 0x3fffffff;
inline int read(){
	int out = 0,flag = 1; char c = getchar();
	while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
	while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
	return out * flag;
}
struct EDGE{int i,a,b,w;}e[50][maxm],d[maxm],b[maxm];
struct Que{int u,v;}q[maxm];
inline bool operator <(const EDGE& a,const EDGE& b){
	return a.w < b.w;
}
LL ans[maxm];
int n,m,Q,sum[50],w[maxm],id[maxm],a[maxm];
int pre[maxm];
int find(int u){return u == pre[u] ? u : pre[u] = find(pre[u]);}
void clear(int t){
	for (int i = 1; i <= t; i++){
		pre[d[i].a] = d[i].a;
		pre[d[i].b] = d[i].b;
	}
}
void comb(int& t,LL& Ans){
	clear(t); int tmp = 0,fa,fb;
	sort(d + 1,d + 1 + t);
	REP(i,t){
		fa = find(d[i].a); fb = find(d[i].b);
		if (fa != fb){
			pre[fb] = fa;
			b[++tmp] = d[i];
		}
	}
	REP(i,tmp) {
		pre[b[i].a] = b[i].a;
		pre[b[i].b] = b[i].b;
	}
	REP(i,tmp) if (b[i].w != -INF){
		fa = find(b[i].a); fb = find(b[i].b);
		if (fa != fb){
			pre[fb] = fa;
			Ans += b[i].w;
		}
	}
	tmp = 0;
	REP(i,t){
		fa = find(d[i].a); fb = find(d[i].b);
		if (fa != fb){
			b[++tmp] = d[i];
			id[d[i].i] = tmp;
			b[tmp].a = find(b[tmp].a);
			b[tmp].b = find(b[tmp].b);
		}
	}
	REP(i,tmp) d[i] = b[i];
	t = tmp;
}
void rd(int& t){
	clear(t); int tmp = 0,fa,fb;
	sort(d + 1,d + 1 + t);
	REP(i,t){
		fa = find(d[i].a); fb = find(d[i].b);
		if (fa != fb){
			pre[fb] = fa;
			b[++tmp] = d[i];
		}
		else if (d[i].w == INF){
			b[++tmp] = d[i];
		}
	}
	for (int i = 1; i <= tmp; i++) d[i] = b[i];
	t = tmp;
}
void solve(int l,int r,int now,LL Ans){
	int t = sum[now];
	if (l == r) a[q[l].u] = q[l].v;   //原标号边权值
	for (int i = 1; i <= t; i++)
		e[now][i].w = a[e[now][i].i];  //边赋值
	for (int i = 1; i <= t; i++)
		d[i] = e[now][i],id[d[i].i] = i;  //新边对应旧边位置
	if (l == r){
		ans[l] = Ans; clear(t);
		sort(d + 1,d + 1 + t);
		int fa,fb;
		for (int i = 1; i <= t; i++){
			fa = find(d[i].a); fb = find(d[i].b);
			if (fa != fb){
				pre[fb] = fa; ans[l] += d[i].w;
			}
		}
		return;
	}
	for (int i = l; i <= r; i++) d[id[q[i].u]].w = -INF;
	comb(t,Ans);
	for (int i = l; i <= r; i++) d[id[q[i].u]].w = INF;
	rd(t);
	REP(i,t) e[now + 1][i] = d[i];
	sum[now + 1] = t;
	int mid = l + r >> 1;
	solve(l,mid,now + 1,Ans);
	solve(mid + 1,r,now + 1,Ans);
}
int main(){
	n = read(); m = read(); Q = read();
	for (int i = 1; i <= m; i++){
		e[0][i].i = i;
		e[0][i].a = read();
		e[0][i].b = read();
		a[i] = e[0][i].w = read();
	}
	for (int i = 1; i <= Q; i++){
		q[i].u = read();
		q[i].v = read();
	}
	sum[0] = m;
	solve(1,Q,0,0);
	for (int i = 1; i <= Q; i++)
		printf("%lld\n",ans[i]);
	return 0;
}

posted @ 2018-05-21 09:58  Mychael  阅读(254)  评论(0编辑  收藏  举报