特征方程

我们通常会需要求解形如\(f_{n + 2} = af_{n + 1} + bf_{n}\)的通项公式,其中\(f_0\)\(f_1\)已知

我们不妨设\(f_n\)是一个等比数列,公比为\(q\)

\[\begin{aligned} f_{n + 2} &= af_{n + 1} + bf_{n} \\ q^2f_n &= aqf_n + bf_n \\ q^2 - aq - b &= 0 \\ \end{aligned} \]

解这个方程即可得到两根\(q = q_0,q = q_1\)
所以\(f_n = (q_0)^n = (q_1)^n\)
同时\(q_0\)\(q_0\)的线性组合也满足通项公式,
所以可以写成\(f_n = \alpha q_0^n + \beta q_1^n\)
再利用\(f_0\)\(f_1\)联立即可解出\(\alpha\)\(\beta\),代入即为\(f_n\)通项

以斐波那契数列为例:

\[\begin{aligned} f_{n + 2} &= f_{n + 1} + f_{n} \\ q^2f_n &= qf_n + f_n \\ q^2 - q - 1 &= 0 \\ \end{aligned} \]

解得

\[q_1 = \frac{1 + \sqrt{5}}{2},q_2 = \frac{1 - \sqrt{5}}{2} \]

\[f_n = \alpha(\frac{1 + \sqrt{5}}{2})^{n} + \beta(\frac{1 - \sqrt{5}}{2})^{n} \]

\[\begin{aligned} \alpha + \beta = 0\\ \alpha\frac{1 + \sqrt{5}}{2} + \beta\frac{1 - \sqrt{5}}{2} = 1\\ \end{aligned} \]

解得

\[\alpha = \frac{\sqrt{5}}{5},\beta = -\frac{\sqrt{5}}{5} \]

综上

\[f_n = \frac{\sqrt{5}}{5}(\frac{1 + \sqrt{5}}{2})^{n} - \frac{\sqrt{5}}{5}(\frac{1 - \sqrt{5}}{2})^{n} \]

posted @ 2018-05-18 10:56  Mychael  阅读(1234)  评论(0编辑  收藏  举报