BZOJ3098 Hash Killer II 【概率】

挺有意思的一题
就是卡一个\(hash\)

我们先取L大概几十保证结果会超出\(10^9 + 7\)

然后就随机输出\(10^5\)个字符

由题目的提示我们可以想到,如果我们有\(n\)个数,选\(k\)次,那么出现重复数字的次数期望为:

\[\sum\limits_{i = 0}^{k} \frac{i}{n} \]

我们令

\[\sum\limits_{i = 0}^{k} \frac{i}{n} = 1 \]

解得\(k\)约等于\(\sqrt{n}\)

就可以证明,在\(n\)范围内随机选\(\sqrt{n}\)个数,期望出现至少一次重复数字

posted @ 2018-04-25 14:22  Mychael  阅读(128)  评论(0编辑  收藏  举报