BZOJ3996 [TJOI2015]线性代数 【最小割】
题目
给出一个NN的矩阵B和一个1N的矩阵C。求出一个1*N的01矩阵A.使得
D=(AB-C)AT最大。其中AT为A的转置。输出D
输入格式
第一行输入一个整数N,接下来N行输入B矩阵,第i行第J个数字代表Bij.
接下来一行输入N个整数,代表矩阵C。矩阵B和矩阵C中每个数字都是不超过1000的非负整数。
输出格式
输出最大的D
输入样例
3
1 2 1
3 1 0
1 2 3
2 3 7
输出样例
2
提示
1<=N<=500
题解
我们将式子化简,就是:
\(\sum_{i = 1}^{n} \sum_{j = 1}^{n} Bij * Ai * Aj - \sum_{i}^{n} Ci * Ai\)
相当于,有n个物品,选择每个物品都有代价,任意两个物品同时选择时都有价值,求最大价值
用最小割解决
对于任意两个点i和j,建一个新点u,两点向u连边INF,u向T连边,容量为两个物品选择的权值
S向所有点连边,容量为该物品价值
我们假设一开始拥有所有价值
这样一来,要割去,每个点要么要花费其代价S->u,要么花费其与其它物品的共同代价u->T
#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 300005,maxm = 5000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2,n,m;
struct EDGE{int to,nxt,f;}ed[maxm];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],0}; h[v] = ne++;
}
int d[maxn],vis[maxn],S,T,cur[maxn];
bool bfs(){
for (int i = S; i <= T; i++) vis[i] = 0,d[i] = INF;
queue<int> q;
q.push(S); vis[S] = true; d[S] = 0;
int u;
while (!q.empty()){
u = q.front(); q.pop();
Redge(u) if (ed[k].f && !vis[to = ed[k].to]){
d[to] = d[u] + 1; vis[to] = true;
q.push(to);
}
}
return vis[T];
}
int dfs(int u,int minf){
if (u == T || !minf) return minf;
int f,flow = 0,to;
if (cur[u] == -1) cur[u] = h[u];
for (int& k = cur[u]; k; k = ed[k].nxt)
if (d[to = ed[k].to] == d[u] + 1 && (f = dfs(to,min(minf,ed[k].f)))){
ed[k].f -= f; ed[k ^ 1].f += f;
flow += f; minf -= f;
if (!minf) break;
}
return flow;
}
int maxflow(){
int flow = 0;
while (bfs()){
memset(cur,-1,sizeof(cur));
flow += dfs(S,INF);
}
return flow;
}
int main(){
n = read(); S = 0; T = n + n * n + 1;
int x,ans = 0,id = n;
for (int i = 1; i <= n; i++){
for (int j = 1; j <= n; j++){
ans += (x = read()); id++;
build(i,id,INF);
build(j,id,INF);
build(id,T,x);
}
}
for (int i = 1; i <= n; i++) build(S,i,read());
printf("%d\n",ans - maxflow());
return 0;
}