BZOJ2005 能量汇集 【gcd求和】
2005: [Noi2010]能量采集
Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4368 Solved: 2607
[Submit][Status][Discuss]
Description
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。
Input
仅包含一行,为两个整数n和m。
Output
仅包含一个整数,表示总共产生的能量损失。
Sample Input
【样例输入1】
5 4
【样例输入2】
3 4
5 4
【样例输入2】
3 4
Sample Output
【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。
题解
这道题有多种解法。
首先对于一个点(x,y),它的贡献为2 * gcd(x,y) - 1,因为在(x,y)之前有gcd(x,y) - 1个点与它斜率相等【即在它与0的连线上】
这样我们的任务就变成了求∑∑gcd(i,j)
求gcd和有多种方法,比较简单的就是设f[i]表示gcd = i的个数,g[i]表示i | gcd的个数
那么显然g[i] = [n / i] * [m / i]
而f[i] = g[i] - (f[2 * i] + f[3 * i] + f[4 * i] + .....)
倒推即可求出
最后的gcdsum = ∑f[i] * i
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define LL long long int #define REP(i,n) for (int i = 1; i <= (n); i++) #define fo(i,x,y) for (int i = (x); i <= (y); i++) #define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next) using namespace std; const int maxn = 100005,maxm = 100005,INF = 1000000000; int n,m; LL f[maxn]; int main() { cin>>n>>m; if (n > m) swap(n,m); LL ans = 0; for (int i = n; i > 0; i--){ f[i] = (LL)(n / i) * (m / i); for (int k = i + i; k <= n; k += i) f[i] -= f[k]; ans += f[i] * i; } cout<<2 * ans - (LL)n * m<<endl; return 0; }