高精度板子
乘法学会fft以后,应该乘除都能优化很多。。
#include <cstdio> #include <cstring> #include <iostream> #include <vector> using namespace std; int mi[28]; const int maxlen=2e5+16, maxbit=1e8; int max(int a, int b) { return a<b?b:a; } struct Bigint{ int flag, len, a[maxlen/8]; Bigint(){ memset(a, 0, sizeof(a)); len=0; flag=0; } void shift(){ for (int i=len++; i>0; --i) a[i]=a[i-1]; a[0]=0; } void plus1(){ ++a[0]; for (int i=0; i<len; ++i) if (a[i]>=maxbit) a[i]-=maxbit, ++a[i+1]; if (a[len]) ++len; } }; //并不是函数传出来的东西不能引用,而是c++不允许临时量被非常量引用 //因为不然你可以改变临时量,这很奇怪 bool operator <(const Bigint &a, const Bigint &b){ if (a.len!=b.len) return a.len<b.len; for (int i=a.len-1; i>=0; --i) if (a.a[i]!=b.a[i]) return a.a[i]<b.a[i]; return false; } bool operator <=(const Bigint &a, const Bigint &b){ if (a.len!=b.len) return a.len<b.len; for (int i=a.len-1; i>=0; --i) if (a.a[i]!=b.a[i]) return a.a[i]<b.a[i]; return true; } istream& operator >>(istream &in, Bigint &x){ char s[maxlen]; scanf("%s", s); int len=strlen(s), count=(len-1)%8+1, j=0, now=(len-1)/8; for (int i=0; i<len; ++i){ j=j*10+s[i]-48; if (!--count) count=8, x.a[now--]=j, j=0; } x.len=(len-1)/8+1; return in; } ostream& operator <<(ostream &out, const Bigint &x){ if (x.flag) printf("-"); printf("%d", x.a[x.len-1]); for (int i=x.len-2; i>=0; --i) printf("%08d", x.a[i]); return out; } Bigint operator +(const Bigint &x, const Bigint &y){ int maxlen=max(x.len, y.len); Bigint re; for (int i=0; i<maxlen; ++i){ re.a[i]+=x.a[i]+y.a[i]; if (re.a[i]>=maxbit) re.a[i+1]+=1, re.a[i]-=maxbit; } if (re.a[maxlen]) re.len=maxlen+1; else re.len=maxlen; return re; } //目前减法只处理自然数 Bigint operator -(const Bigint &a, const Bigint &b){ bool less=false; if (a<b) less=true; const Bigint &x=less?b:a, &y=less?a:b; Bigint re; if (less) re.flag=1; for (int i=0; i<x.len; ++i){ re.a[i]+=x.a[i]-y.a[i]; if (re.a[i]<0) re.a[i]+=maxbit, re.a[i+1]-=1; } //注意a=b for (re.len=x.len; re.len&&!re.a[re.len-1]; --re.len); return re; } //O(n)双对单 Bigint operator *(const Bigint &x, int y){ Bigint re; for (int i=0; i<x.len; ++i){ long long t=re.a[i]+x.a[i]*(long long)y; re.a[i+1]+=t/maxbit, re.a[i]=t%maxbit; } for (re.len=x.len; re.a[re.len]; ++re.len); return re; } //n^2辣鸡算法,还不会傅里叶 Bigint operator *(const Bigint &x, const Bigint &y){ Bigint re; for (int i=0; i<x.len; ++i) for (int j=0; j<y.len; ++j){ long long t=re.a[i+j]+(long long)x.a[i]*y.a[j]; re.a[i+j+1]+=t/maxbit, re.a[i+j]=t%maxbit; } if (re.a[x.len+y.len-1]) re.len=x.len+y.len; else re.len=x.len+y.len-1; return re; } //n^2双对单除法 Bigint operator /(const Bigint &x, int y){ Bigint re; re.len=x.len; long long tmp=0; for (int i=x.len-1; i>=0; --i){ tmp=tmp*maxbit+x.a[i]; re.a[i]=tmp/y; tmp=tmp%y; } for (; re.len>0&&!re.a[re.len-1]; --re.len); return re; } //n^2log1e8双高精除法(fft后可以到nlog1e8) Bigint operator /(const Bigint &x, const Bigint &y){ Bigint re; re.len=x.len; Bigint tmp; for (int i=x.len-1; i>=0; --i){ tmp.shift(); tmp.a[0]=x.a[i]; //for (; !(tmp<y); tmp=tmp-y, ++re.a[i]); for (int j=27; j>=0; --j){ if (y*mi[j]<=tmp) tmp=tmp-y*mi[j], re.a[i]+=mi[j]; } } for (; re.len>0&&!re.a[re.len-1]; --re.len); return re; } Bigint operator %(const Bigint &x, const Bigint &y){ Bigint re; re.len=x.len; Bigint tmp; for (int i=x.len-1; i>=0; --i){ tmp.shift(); tmp.a[0]=x.a[i]; //for (; !(tmp<y); tmp=tmp-y, ++re.a[i]); for (int j=27; j>=0; --j){ if (y*mi[j]<=tmp) tmp=tmp-y*mi[j], re.a[i]+=mi[j]; } } return tmp; } void init(){ mi[0]=1; for (int i=1; i<27; ++i) mi[i]=mi[i-1]*2; } Bigint a, b; int main(){ init(); cin>>a>>b; cout<<a+b<<endl<<a-b<<endl<<a*b<<endl<<a/b<<endl<<a%b; return 0; }