//3d5 凸多边形最优三角剖分
#include <iostream>
using namespace std;
const int N = 7;//凸多边形边数+1
int weight[][N] = {{0,2,3,1,5,6},{2,0,3,4,8,6},{3,3,0,10,13,5},{1,4,10,0,12,5},{5,8,13,12,0,3},{6,6,7,5,3,0}};//凸多边形的权
int MinWeightTriangulation(int n,int **t,int **s);
void Traceback(int i,int j,int **s);//构造最优解
int Weight(int a,int b,int c);//权函数
int main()
{
int **s = new int *[N];
int **t = new int *[N];
for(int i=0;i<N;i++)
{
s[i] = new int[N];
t[i] = new int[N];
}
cout<<"此多边形的最优三角剖分值为:"<<MinWeightTriangulation(N-1,t,s)<<endl;
cout<<"最优三角剖分结构为:"<<endl;
Traceback(1,5,s); //s[i][j]记录了Vi-1和Vj构成三角形的第3个顶点的位置
return 0;
}
int MinWeightTriangulation(int n,int **t,int **s)
{
for(int i=1; i<=n; i++)
{
t[i][i] = 0;
}
for(int r=2; r<=n; r++) //r为当前计算的链长(子问题规模)
{
for(int i=1; i<=n-r+1; i++)//n-r+1为最后一个r链的前边界
{
int j = i+r-1;//计算前边界为r,链长为r的链的后边界
t[i][j] = t[i+1][j] + Weight(i-1,i,j);//将链ij划分为A(i) * ( A[i+1:j] )这里实际上就是k=i
s[i][j] = i;
for(int k=i+1; k<j; k++)
{
//将链ij划分为( A[i:k] )* (A[k+1:j])
int u = t[i][k] + t[k+1][j] + Weight(i-1,k,j);
if(u<t[i][j])
{
t[i][j] = u;
s[i][j] = k;
}
}
}
}
return t[1][N-2];
}
void Traceback(int i,int j,int **s)
{
if(i==j) return;
Traceback(i,s[i][j],s);
Traceback(s[i][j]+1,j,s);
cout<<"三角剖分顶点:V"<<i-1<<",V"<<j<<",V"<<s[i][j]<<endl;
}
int Weight(int a,int b,int c)
{
return weight[a][b] + weight[b][c] + weight[a][c];
}