[CSP-S模拟测试]:天才绅士少女助手克里斯蒂娜(数学+树状数组)

题目描述

  红莉栖想要弄清楚楼下天王寺大叔的显像管电视对“电话微波炉(暂定)”的影响。
  选取显像管的任意一个平面,一开始平面内有个$n$电子,初始速度分别为$v_i$,定义飘升系数为
$$\sum \limits_{1\leqslant i<j\leqslant n}|v_i\times v_j|^2$$
  由于电视会遭到大叔不同程度的暴击,电子的速度常常会发生变化。也就是说,有两种类型的操作:
  $\bullet 1\ p\ x\ y$将$v_p$改为$(x,y)$
  $\bullet 2\ l\ r$询问$[l,r]$这段区间内的电子的飘升系数
  这么简单的问题红莉栖当然能解决,但是她需要一个人帮忙验证一下结果的正确性。
  由于唯一帮得上忙的桶子去找菲利斯了,于是只能拜托你来完成这个任务了。答案对$20170927$取模即可。


输入格式

第一行两个整数$n,m$表示电子个数和询问个数。
接下来$n$行,每行两个整数$x,y$表示$v_i$。
接下来$m$行,每行形如$1\ p\ x\ y$或$2\ l\ r$,分别表示两种操作。


输出格式

对于每个操作$2$,输出一行一个整数表示飘升系数对$20170927$取模的值。


样例

样例输入:

9 5
13052925 5757314
9968857 11135327
13860145 3869873
6912189 3461377
2911603 7061332
6334922 7708411
5505379 5915686
6806727 588727
7603043 15687404
2 1 6
1 7 2602783 18398476
1 8 8636316 19923037
2 2 7
2 2 4

样例输出:

18529202
963126
19167545


数据范围与提示

对于$100\%$的数据,$1\leqslant n,m\leqslant 10^6,0\leqslant x_i,y_i<20170927,1\leqslant l_i\leqslant r_i\leqslant n$。


题解

我依($qing$)稀($chu$)记得波波老师让我出过这道题的数据,就是题面动了一点,时间限制调小了(当时我还是挺慌的,原题$4s$,现在这个时限我的代码都跑不过我的数据……),但是我还是打了,然后它就$A$了……

简单说一下,上面那个鬼畜的$\times$其实是叉积也就是:

$v_1=(x_1,y_1),v_2=(x_2,y_2) \Rightarrow \vec{v_1}\times \vec{v_2}=x_1\times y_2-x_2\times y_1$。

初步是这样的:$\large \begin{array}{ll} ans &=& \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r (v_i \times v_j)^2 \\ &=& \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r (x_iy_j-x_jy_i)^2 \end{array}$

那么我们化简一下上面那个式子即可得到:

$\large \begin{array}{ll} ans &=& \sum \limits_{i=l}^{r} \sum \limits_{j=i+1}^r (x_i^2y_j^2+x_j^2y_i^2-2x_iy_ix_jy_j) \\ &=& \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r x_i^2y_j^2 + \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r x_j^2y_i^2 - \sum \limits_{i=l}^r \sum \limits_{j=i+1}^r 2x_iy_ix_jy_j \\ &=& \sum \limits_{i=l}^r \sum \limits_{j=l}^r [i!=j]\times x_i^2y_j^2 - \sum \limits_{i=l}^r \sum \limits_{j=l}^r [i!=j]\times x_iy_ix_jy_j \\ &=& \sum \limits_{i=l}^r x_i^2 (\sum \limits_{j=l}^r y_j^2 -y_i^2) - (\sum \limits_{i=l}^r x_iy_i (\sum \limits_{j=l}^r x_jy_j - x_iy_i)) \\ &=& \sum \limits_{i=l}^r x_i^2 \sum \limits_{j=l}^r y_j^2 - \sum \limits_{i=l}^r x_i^2y_i^2 - (\sum \limits_{i=l}^r x_iy_i \sum \limits_{j=l}^r x_jy_j - \sum \limits_{i=l}^r x_i^2 y_i^2) \\ &=& \sum \limits_{i=l}^r x_i^2\times \sum \limits_{i=l}^ry_i^2 - (\sum \limits_{i=l}^r x_iy_i)^2\end{array}$

有了这个式子,我们就可以用三个树状数组维护分别维护$\sum \limits_{i=l}^r x_i^2$,$\sum \limits_{i=l}^r y_i^2$,$\sum \limits_{i=l}^r x_iy_i$即可。

时间复杂度:$\Theta((n+m)\log n)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
const int mod=20170927;
int n,m;
long long tr[3][4000001];
pair<long long,long long> e[1000001];
void add(int x,long long val,int id)
{
	for(int i=x;i<=n;i+=i&-i)
		tr[id][i]=(tr[id][i]+val)%mod;
}
long long query(int x,int id)
{
	long long res=0;
	for(int i=x;i;i-=i&-i)
		res=(res+tr[id][i])%mod;
	return res;
}
long long ask(int l,int r,int id)
{
	return (query(r,id)-query(l-1,id)+mod)%mod;
}
int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)
	{
		scanf("%lld%lld",&e[i].first,&e[i].second);
		add(i,e[i].first*e[i].first,0);
		add(i,e[i].second*e[i].second,1);
		add(i,e[i].first*e[i].second,2);
	}
	while(m--)
	{
		int op;
		scanf("%d",&op);
		if(op==1)
		{
			int p;
			long long x,y;
			scanf("%d%lld%lld",&p,&x,&y);
			add(p,(x*x%mod-e[p].first*e[p].first%mod+mod)%mod,0);
			add(p,(y*y%mod-e[p].second*e[p].second%mod+mod)%mod,1);
			add(p,(x*y%mod-e[p].first*e[p].second%mod+mod)%mod,2);
			e[p]=make_pair(x,y);
		}
		else
		{
			int l,r;
			scanf("%d%d",&l,&r);
			long long res=ask(l,r,0)*ask(l,r,1)%mod,res1=ask(l,r,2);
			res=(res-(res1*res1%mod)+mod)%mod;
			printf("%lld\n",res);
		}
	}
	return 0;
}

rp++

posted @ 2019-10-05 16:36  HEOI-动动  阅读(261)  评论(0编辑  收藏  举报